7.4 Combined Bending and In-Plane Loading of a Thin Rectangular Plate 239ThetotalforceinthezdirectionisfoundfromthesummationoftheseexpressionsandisNx∂^2 w
∂x^2δxδy+∂Nx
∂x∂w
∂xδxδy+Ny∂^2 w
∂y^2δxδy+∂Ny
∂y∂w
∂yδxδy+
∂Nxy
∂x∂w
∂yδxδy+ 2 Nxy∂^2 w
∂x∂yδxδy+∂Nxy
∂y∂w
∂xδxδyinwhichNyxisequaltoandisreplacedbyNxy.UsingEqs.(7.31)and(7.32),wereducethisexpressionto
(
Nx∂^2 w
∂x^2+Ny∂^2 w
∂y^2+ 2 Nxy∂^2 w
∂x∂y)
δxδySincethein-planeforcesdonotproducemomentsalongtheedgesoftheelement,Eqs.(7.17)and
(7.18)remainunaffected.Further,Eq.(7.16)maybemodifiedsimplybytheadditionofthepreceding
verticalcomponentofthein-planeloadstoqδxδy.Therefore,thegoverningdifferentialequationfora
thinplatesupportingtransverseandin-planeloadsis,fromEq.(7.20),
∂^4 w
∂x^4+ 2
∂^4 w
∂x^2 ∂y^2+
∂^4 w
∂y^4=
1
D
(
q+Nx∂^2 w
∂x^2+Ny∂^2 w
∂y^2+ 2 Nxy∂^2 w
∂x∂y)
(7.33)
Example 7.3
DeterminethedeflectedformofthethinrectangularplateofExample7.1if,inadditiontoauniformly
distributedtransverseloadofintensityq 0 ,itsupportsanin-planetensileforceNxperunitlength.
TheuniformtransverseloadmaybeexpressedasaFourierseries(seeEq.(7.28)andExample7.1);
thatis,
q=16 q 0
π^2∑∞
m=1,3,5∑∞
n=1,3,51
mnsinmπx
asinnπy
bEquation(7.33)thenbecomes,onsubstitutingforq,
∂^4 w
∂x^4+ 2
∂^4 w
∂x^2 ∂y^2+
∂^4 w
∂y^4−
Nx
D∂^2 w
∂x^2=
16 q 0
π^2 D∑∞
m=1,3,5∑∞
n=1,3,51
mnsinmπx
asinnπy
b(i)Theappropriateboundaryconditionsare
w=∂^2 w
∂x^2=0atx=0andaw=∂^2 w
∂y^2=0aty=0andb