240 CHAPTER 7 Bending of Thin Plates
Theseconditionsmaybesatisfiedbytheassumptionofadeflectedformoftheplategivenby
w=∑∞
m= 1∑∞
n= 1Amnsinmπx
asinnπy
bSubstitutingthisexpressionintoEq.(i)gives
Amn=16 q 0π^6 Dmn[(
m^2
a^2+
n^2
b^2) 2
+
Nxm^2
π^2 Da^2] foroddmandnAmn=0 forevenmandnTherefore,
w=16 q 0
π^6 D∑∞
m=1,3,5∑∞
n=1,3,51
mn[(
m^2
a^2+
n^2
b^2) 2
+
Nxm^2
π^2 Da^2]sin
mπx
asinnπy
b(ii)ComparingEq.(ii)withEq.(i)ofExample7.1,weseethat,asaphysicalinspectionwouldindicate,
thepresenceofatensilein-planeforcedecreasesdeflection.Conversely,acompressivein-planeforce
wouldincreasethedeflection.
7.5 BendingofThinPlatesHavingaSmallInitialCurvature.......................................
Supposethatathinplatehasaninitialcurvaturesothatthedeflectionofanypointinitsmiddleplaneis
w 0 .Weassumethatw 0 issmallcomparedwiththethicknessoftheplate.Theapplicationoftransverse
andin-planeloadswillcausetheplatetodeflectafurtheramountw 1 sothatthetotaldeflectionisthen
w=w 0 +w 1 .However,inthederivationofEq.(7.33),wenotethattheleft-handsidewasobtainedfrom
expressionsforbendingmomentswhichthemselvesdependonthechangeofcurvature.Wetherefore
usethedeflectionw 1 ontheleft-handside,notw.Theeffectonbendingofthein-planeforcesdepends
onthetotaldeflectionwsothatwewriteEq.(7.33)
∂^4 w 1
∂x^4+ 2
∂^4 w 1
∂x^2 ∂y^2+
∂^4 w 1
∂y^4=
1
D
[
q+Nx∂^2 (w 0 +w 1 )
∂x^2+Ny∂^2 (w 0 +w 1 )
∂y^2+ 2 Nxy∂^2 (w 0 +w 1 )
∂x∂y