240 CHAPTER 7 Bending of Thin Plates
Theseconditionsmaybesatisfiedbytheassumptionofadeflectedformoftheplategivenby
w=
∑∞
m= 1
∑∞
n= 1
Amnsin
mπx
a
sin
nπy
b
SubstitutingthisexpressionintoEq.(i)gives
Amn=
16 q 0
π^6 Dmn
[(
m^2
a^2
+
n^2
b^2
) 2
+
Nxm^2
π^2 Da^2
] foroddmandn
Amn=0 forevenmandn
Therefore,
w=
16 q 0
π^6 D
∑∞
m=1,3,5
∑∞
n=1,3,5
1
mn
[(
m^2
a^2
+
n^2
b^2
) 2
+
Nxm^2
π^2 Da^2
]sin
mπx
a
sin
nπy
b
(ii)
ComparingEq.(ii)withEq.(i)ofExample7.1,weseethat,asaphysicalinspectionwouldindicate,
thepresenceofatensilein-planeforcedecreasesdeflection.Conversely,acompressivein-planeforce
wouldincreasethedeflection.
7.5 BendingofThinPlatesHavingaSmallInitialCurvature.......................................
Supposethatathinplatehasaninitialcurvaturesothatthedeflectionofanypointinitsmiddleplaneis
w 0 .Weassumethatw 0 issmallcomparedwiththethicknessoftheplate.Theapplicationoftransverse
andin-planeloadswillcausetheplatetodeflectafurtheramountw 1 sothatthetotaldeflectionisthen
w=w 0 +w 1 .However,inthederivationofEq.(7.33),wenotethattheleft-handsidewasobtainedfrom
expressionsforbendingmomentswhichthemselvesdependonthechangeofcurvature.Wetherefore
usethedeflectionw 1 ontheleft-handside,notw.Theeffectonbendingofthein-planeforcesdepends
onthetotaldeflectionwsothatwewriteEq.(7.33)
∂^4 w 1
∂x^4
+ 2
∂^4 w 1
∂x^2 ∂y^2
+
∂^4 w 1
∂y^4
=
1
D
[
q+Nx
∂^2 (w 0 +w 1 )
∂x^2
+Ny
∂^2 (w 0 +w 1 )
∂y^2
+ 2 Nxy
∂^2 (w 0 +w 1 )
∂x∂y