7.4 Combined Bending and In-Plane Loading of a Thin Rectangular Plate 239
Thetotalforceinthezdirectionisfoundfromthesummationoftheseexpressionsandis
Nx
∂^2 w
∂x^2
δxδy+
∂Nx
∂x
∂w
∂x
δxδy+Ny
∂^2 w
∂y^2
δxδy+
∂Ny
∂y
∂w
∂y
δxδy
+
∂Nxy
∂x
∂w
∂y
δxδy+ 2 Nxy
∂^2 w
∂x∂y
δxδy+
∂Nxy
∂y
∂w
∂x
δxδy
inwhichNyxisequaltoandisreplacedbyNxy.UsingEqs.(7.31)and(7.32),wereducethisexpressionto
(
Nx
∂^2 w
∂x^2
+Ny
∂^2 w
∂y^2
+ 2 Nxy
∂^2 w
∂x∂y
)
δxδy
Sincethein-planeforcesdonotproducemomentsalongtheedgesoftheelement,Eqs.(7.17)and
(7.18)remainunaffected.Further,Eq.(7.16)maybemodifiedsimplybytheadditionofthepreceding
verticalcomponentofthein-planeloadstoqδxδy.Therefore,thegoverningdifferentialequationfora
thinplatesupportingtransverseandin-planeloadsis,fromEq.(7.20),
∂^4 w
∂x^4
+ 2
∂^4 w
∂x^2 ∂y^2
+
∂^4 w
∂y^4
=
1
D
(
q+Nx
∂^2 w
∂x^2
+Ny
∂^2 w
∂y^2
+ 2 Nxy
∂^2 w
∂x∂y
)
(7.33)
Example 7.3
DeterminethedeflectedformofthethinrectangularplateofExample7.1if,inadditiontoauniformly
distributedtransverseloadofintensityq 0 ,itsupportsanin-planetensileforceNxperunitlength.
TheuniformtransverseloadmaybeexpressedasaFourierseries(seeEq.(7.28)andExample7.1);
thatis,
q=
16 q 0
π^2
∑∞
m=1,3,5
∑∞
n=1,3,5
1
mn
sin
mπx
a
sin
nπy
b
Equation(7.33)thenbecomes,onsubstitutingforq,
∂^4 w
∂x^4
+ 2
∂^4 w
∂x^2 ∂y^2
+
∂^4 w
∂y^4
−
Nx
D
∂^2 w
∂x^2
=
16 q 0
π^2 D
∑∞
m=1,3,5
∑∞
n=1,3,5
1
mn
sin
mπx
a
sin
nπy
b
(i)
Theappropriateboundaryconditionsare
w=
∂^2 w
∂x^2
=0atx=0anda
w=
∂^2 w
∂y^2
=0aty=0andb