16 CHAPTER 1 Basic Elasticity
Itfollowsthat
sin2θ=
−(σx−σy)
√
(σx−σy)^2 + 4 τxy^2
cos2θ=
2 τxy
√
(σx−σy)^2 + 4 τxy^2
sin2(θ+π/ 2 )=
(σx−σy)
√
(σx−σy)^2 + 4 τxy^2
cos2(θ+π/ 2 )=
− 2 τxy
√
(σx−σy)^2 + 4 τxy^2
SubstitutingthesevaluesinEq.(1.9)gives
τmax,min=±
1
2
√
(σx−σy)^2 + 4 τxy^2 (1.14)
Here, as in the case of principal stresses, we take the maximum value as being the greater algebraic
value.
ComparingEq.(1.14)withEqs.(1.11)and(1.12),weseethat
τmax=
σI−σII
2
(1.15)
Equations(1.14)and(1.15)givethemaximumshearstressatthepointinthebodyintheplaneof
thegivenstresses.Forathree-dimensionalbodysupportingatwo-dimensionalstresssystem,thisisnot
necessarilythemaximumshearstressatthepoint.
Since Eq. (1.13) is the negative reciprocal of Eq. (1.10), then the angles 2θgivenbythesetwo
equations differ by 90◦, or the planes of maximum shear stress are inclined at 45◦to the principal
planes.
1.8 Mohr’sCircleofStress..............................................................................
ThestateofstressatapointinadeformablebodymaybedeterminedgraphicallybyMohr’scircleof
stress.
InSection1.6,thedirectandshearstressesonaninclinedplaneweregivenby
σn=σxcos^2 θ+σysin^2 θ+τxysin2θ (Eq.(1.8))
and
τ=
(σx−σy)
2
sin2θ−τxycos2θ (Eq.(1.9))
respectively. The positive directions of these stresses and the angleθare defined in Fig. 1.12(a).
Equation(1.8)mayberewrittenintheform
σn=
σx
2
( 1 +cos2θ)+
σy
2
( 1 −cos2θ)+τxysin2θ