7.6 Energy Method for the Bending of Thin Plates 241Theeffectofaninitialcurvatureondeflectionisthereforeequivalenttotheapplicationofatransverse
loadofintensity
Nx∂^2 w 0
∂x^2+Ny∂^2 w 0
∂y^2+ 2 Nxy∂^2 w 0
∂x∂yThus,in-planeloadsaloneproducebending,providedthereisaninitialcurvature.
Assumingthattheinitialformofthedeflectedplateis
w 0 =∑∞
m= 1∑∞
n= 1Amnsinmπx
asinnπy
b(7.35)
thenbysubstitutioninEq.(7.34),wefindthatifNxiscompressiveandNy=Nxy=0,
w 1 =∑∞
m= 1∑∞
n= 1Bmnsinmπx
asinnπy
b(7.36)
where
Bmn=AmnNx
(π^2 D/a^2 )[m+(n^2 a^2 /mb^2 )]^2 −NxWe shall return to the consideration of initially curved plates in the discussion of the experimental
determinationofbucklingloadsofflatplatesinChapter9.
7.6 EnergyMethodfortheBendingofThinPlates..................................................
Twotypesofsolutionareobtainableforthinplatebendingproblemsbytheapplicationoftheprinciple
of the stationary value of the total potential energy of the plate and its external loading. The first, in
whichtheformofthedeflectedshapeoftheplateisknown,producesanexactsolution;thesecond,the
Rayleigh–Ritzmethod,assumesanapproximatedeflectedshapeintheformofaserieshavingafinite
numberoftermschosentosatisfytheboundaryconditionsoftheproblemandalsotogivethekindof
deflectionpatternexpected.
InChapter5,wesawthatthetotalpotentialenergyofastructuralsystemcomprisedtheinternalor
strainenergyofthestructuralmember,plusthepotentialenergyoftheappliedloading.Wenowproceed
toderiveexpressionsforthesequantitiesfortheloadingcasesconsideredintheprecedingsections.
7.6.1 Strain Energy Produced by Bending and Twisting
Inthinplateanalysis,weareconcernedwithdeflectionsnormaltotheloadedsurfaceoftheplate.These,
asinthecaseofslenderbeams,areassumedtobeprimarilyduetobendingactionsothattheeffects
ofshearstrainandshorteningorstretchingofthemiddleplaneoftheplateareignored.Therefore,it
issufficientforustocalculatethestrainenergyproducedbybendingandtwistingonlyasthiswillbe
applicable,forthereasonoftheprecedingassumption,toallloadingcases.Itmustberememberedthat