7.6 Energy Method for the Bending of Thin Plates 241
Theeffectofaninitialcurvatureondeflectionisthereforeequivalenttotheapplicationofatransverse
loadofintensity
Nx
∂^2 w 0
∂x^2
+Ny
∂^2 w 0
∂y^2
+ 2 Nxy
∂^2 w 0
∂x∂y
Thus,in-planeloadsaloneproducebending,providedthereisaninitialcurvature.
Assumingthattheinitialformofthedeflectedplateis
w 0 =
∑∞
m= 1
∑∞
n= 1
Amnsin
mπx
a
sin
nπy
b
(7.35)
thenbysubstitutioninEq.(7.34),wefindthatifNxiscompressiveandNy=Nxy=0,
w 1 =
∑∞
m= 1
∑∞
n= 1
Bmnsin
mπx
a
sin
nπy
b
(7.36)
where
Bmn=
AmnNx
(π^2 D/a^2 )[m+(n^2 a^2 /mb^2 )]^2 −Nx
We shall return to the consideration of initially curved plates in the discussion of the experimental
determinationofbucklingloadsofflatplatesinChapter9.
7.6 EnergyMethodfortheBendingofThinPlates..................................................
Twotypesofsolutionareobtainableforthinplatebendingproblemsbytheapplicationoftheprinciple
of the stationary value of the total potential energy of the plate and its external loading. The first, in
whichtheformofthedeflectedshapeoftheplateisknown,producesanexactsolution;thesecond,the
Rayleigh–Ritzmethod,assumesanapproximatedeflectedshapeintheformofaserieshavingafinite
numberoftermschosentosatisfytheboundaryconditionsoftheproblemandalsotogivethekindof
deflectionpatternexpected.
InChapter5,wesawthatthetotalpotentialenergyofastructuralsystemcomprisedtheinternalor
strainenergyofthestructuralmember,plusthepotentialenergyoftheappliedloading.Wenowproceed
toderiveexpressionsforthesequantitiesfortheloadingcasesconsideredintheprecedingsections.
7.6.1 Strain Energy Produced by Bending and Twisting
Inthinplateanalysis,weareconcernedwithdeflectionsnormaltotheloadedsurfaceoftheplate.These,
asinthecaseofslenderbeams,areassumedtobeprimarilyduetobendingactionsothattheeffects
ofshearstrainandshorteningorstretchingofthemiddleplaneoftheplateareignored.Therefore,it
issufficientforustocalculatethestrainenergyproducedbybendingandtwistingonlyasthiswillbe
applicable,forthereasonoftheprecedingassumption,toallloadingcases.Itmustberememberedthat