7.6 Energy Method for the Bending of Thin Plates 245
andsince∂w/∂xissmall,then
δa≈δx
[
1 +
1
2
(
∂w
∂x
) 2 ]
Hence,
a=
∫a′
0
[
1 +
1
2
(
∂w
∂x
) 2 ]
dx
giving
a=a′+
∫a′
0
1
2
(
∂w
∂x
) 2
dx
and
λ=a−a′=
∫a′
0
1
2
(
∂w
∂x
) 2
dx
Since
∫a′
0
1
2
(
∂w
∂x
) 2
dx onlydiffersfrom
∫a
0
1
2
(
∂w
∂x
) 2
dx
byatermofnegligibleorder,wewrite
λ=
∫a
0
1
2
(
∂w
∂x
) 2
dx (7.41)
ThepotentialenergyVxoftheNxloadingfollowsfromEqs.(7.40)and(7.41);thus,
Vx=−
1
2
∫a
0
∫b
0
Nx
(
∂w
∂x
) 2
dxdy (7.42)
Similarly,
Vy=−
1
2
∫a
0
∫b
0
Ny
(
∂w
∂y
) 2
dxdy (7.43)
Thepotentialenergyofthein-planeshearloadNxymaybefoundbyconsideringtheworkdoneby
Nxyduringthesheardistortioncorrespondingtothedeflectionwofanelement.Thisshearstrainisthe