1.8Mohr’s Circle of Stress 17
Fig.1.12
(a) Stresses on a triangular element; (b) Mohr’s circle of stress for stress system shown in (a).
or
σn−
1
2
(σx+σy)=
1
2
(σx−σy)cos2θ+τxysin2θ
SquaringandaddingthisequationtoEq.(1.9),weobtain
[
σn−
1
2
(σx+σy)
] 2
+τ^2 =
[
1
2
(σx−σy)
] 2
+τxy^2
whichrepresentstheequationofacircleofradius^12
√
(σx−σy)^2 + 4 τxy^2 andhavingitscenteratthepoint
((σx−σy)/2,0).
ThecircleisconstructedbylocatingthepointsQ 1 (σx,τxy)andQ 2 (σy,−τxy)referredtoaxesOστas
showninFig.1.12(b).ThecenterofthecirclethenliesatCtheintersectionofQ 1 Q 2 andtheOσaxis;
clearlyCisthepoint((σx−σy)/2,0),andtheradiusofthecircleis^12
√
(σx−σy)^2 + 4 τxy^2 asrequired.
CQ′is now set off at an angle 2θ(positive clockwise) to CQ 1 , and Q′is then the point (σn,−τ)as
demonstratedinthefollowing.FromFig.1.12(b),weseethat
ON=OC+CN
orsinceOC=(σx+σy)/2,CN=CQ′cos(β− 2 θ),andCQ′=CQ 1 ,wehave
σn=
σx+σy
2
+CQ 1 (cosβcos2θ+sinβsin2θ)
But
CQ 1 =
CP 1
cosβ
and CP 1 =
(σx−σy)
2