Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

252 CHAPTER 7 Bending of Thin Plates


Endsofminoraxis

σx,max=
± 6 pa^4 b^2
t^2 ( 3 b^4 + 2 a^2 b^2 + 3 a^4 )

, σy,max=
± 6 pb^4 a^2
t^2 ( 3 b^4 + 2 a^2 b^2 + 3 a^4 )

P.7.9 Use the energy method to determine the deflected shape of a rectangular platea×b, simply supported
alongeachedgeandcarryingaconcentratedloadWataposition(ξ,η)referredtoaxesthroughacornerofthe
plate.Thedeflectedshapeoftheplatecanberepresentedbytheseries


w=

∑∞

m= 1

∑∞

n= 1

Amnsin

mπx
a
sin

nπy
b

Ans. Amn=

4 Wsin
mπξ
a
sin
nπη
b
π^4 Dab[(m^2 /a^2 )+(n^2 /b^2 )]^2

P.7.10 If,inadditiontothepointloadW,theplateofproblemP.7.9supportsanin-planecompressiveloadofNx
perunitlengthontheedgesx=0andx=a,calculatetheresultingdeflectedshape.


Ans. Amn=

4 Wsin
mπξ
a
sin
nπη
b

abDπ^4

[(
m^2
a^2

+
n^2
b^2

) 2

m^2 Nx
π^2 a^2 D

]

P.7.11 Asquareplateofsideaissimplysupportedalongallfoursidesandissubjectedtoatransverseuniformly
distributedloadofintensityq 0 .ItisproposedtodeterminethedeflectedshapeoftheplatebytheRayleigh–Ritz
methodemployinga“guessed”formforthedeflectionof


w=A 11

(
1 −

4 x^2
a^2

)(
1 −

4 y^2
a^2

)

inwhichtheoriginistakenatthecenteroftheplate.
Commentonthedegreetowhichtheboundaryconditionsaresatisfiedandfindthecentraldeflectionassuming
ν=0.3.


Ans.
0.0389q 0 a^4
Et^3

P.7.12 A rectangular platea×b, simply supported along each edge, possesses a small initial curvature in its
unloadedstategivenby


w 0 =A 11 sin

πx
a
sin

πy
b

Determine,usingtheenergymethod,itsfinaldeflectedshapewhenitissubjectedtoacompressiveloadNxper
unitlengthalongtheedgesx=0,x=a.


Ans. w=
A 11
[
1 −
Nxa^2
π^2 D

/(
1 +
a^2
b^2

) 2 ]sin

πx
a
sin
πy
b
Free download pdf