252 CHAPTER 7 Bending of Thin Plates
Endsofminoraxisσx,max=
± 6 pa^4 b^2
t^2 ( 3 b^4 + 2 a^2 b^2 + 3 a^4 ), σy,max=
± 6 pb^4 a^2
t^2 ( 3 b^4 + 2 a^2 b^2 + 3 a^4 )P.7.9 Use the energy method to determine the deflected shape of a rectangular platea×b, simply supported
alongeachedgeandcarryingaconcentratedloadWataposition(ξ,η)referredtoaxesthroughacornerofthe
plate.Thedeflectedshapeoftheplatecanberepresentedbytheseries
w=∑∞m= 1∑∞n= 1Amnsinmπx
a
sinnπy
bAns. Amn=4 Wsin
mπξ
a
sin
nπη
b
π^4 Dab[(m^2 /a^2 )+(n^2 /b^2 )]^2P.7.10 If,inadditiontothepointloadW,theplateofproblemP.7.9supportsanin-planecompressiveloadofNx
perunitlengthontheedgesx=0andx=a,calculatetheresultingdeflectedshape.
Ans. Amn=4 Wsin
mπξ
a
sin
nπη
babDπ^4[(
m^2
a^2+
n^2
b^2) 2
−
m^2 Nx
π^2 a^2 D]P.7.11 Asquareplateofsideaissimplysupportedalongallfoursidesandissubjectedtoatransverseuniformly
distributedloadofintensityq 0 .ItisproposedtodeterminethedeflectedshapeoftheplatebytheRayleigh–Ritz
methodemployinga“guessed”formforthedeflectionof
w=A 11(
1 −4 x^2
a^2)(
1 −4 y^2
a^2)inwhichtheoriginistakenatthecenteroftheplate.
Commentonthedegreetowhichtheboundaryconditionsaresatisfiedandfindthecentraldeflectionassuming
ν=0.3.
Ans.
0.0389q 0 a^4
Et^3P.7.12 A rectangular platea×b, simply supported along each edge, possesses a small initial curvature in its
unloadedstategivenby
w 0 =A 11 sinπx
a
sinπy
bDetermine,usingtheenergymethod,itsfinaldeflectedshapewhenitissubjectedtoacompressiveloadNxper
unitlengthalongtheedgesx=0,x=a.
Ans. w=
A 11
[
1 −
Nxa^2
π^2 D/(
1 +
a^2
b^2) 2 ]sinπx
a
sin
πy
b