252 CHAPTER 7 Bending of Thin Plates
Endsofminoraxis
σx,max=
± 6 pa^4 b^2
t^2 ( 3 b^4 + 2 a^2 b^2 + 3 a^4 )
, σy,max=
± 6 pb^4 a^2
t^2 ( 3 b^4 + 2 a^2 b^2 + 3 a^4 )
P.7.9 Use the energy method to determine the deflected shape of a rectangular platea×b, simply supported
alongeachedgeandcarryingaconcentratedloadWataposition(ξ,η)referredtoaxesthroughacornerofthe
plate.Thedeflectedshapeoftheplatecanberepresentedbytheseries
w=
∑∞
m= 1
∑∞
n= 1
Amnsin
mπx
a
sin
nπy
b
Ans. Amn=
4 Wsin
mπξ
a
sin
nπη
b
π^4 Dab[(m^2 /a^2 )+(n^2 /b^2 )]^2
P.7.10 If,inadditiontothepointloadW,theplateofproblemP.7.9supportsanin-planecompressiveloadofNx
perunitlengthontheedgesx=0andx=a,calculatetheresultingdeflectedshape.
Ans. Amn=
4 Wsin
mπξ
a
sin
nπη
b
abDπ^4
[(
m^2
a^2
+
n^2
b^2
) 2
−
m^2 Nx
π^2 a^2 D
]
P.7.11 Asquareplateofsideaissimplysupportedalongallfoursidesandissubjectedtoatransverseuniformly
distributedloadofintensityq 0 .ItisproposedtodeterminethedeflectedshapeoftheplatebytheRayleigh–Ritz
methodemployinga“guessed”formforthedeflectionof
w=A 11
(
1 −
4 x^2
a^2
)(
1 −
4 y^2
a^2
)
inwhichtheoriginistakenatthecenteroftheplate.
Commentonthedegreetowhichtheboundaryconditionsaresatisfiedandfindthecentraldeflectionassuming
ν=0.3.
Ans.
0.0389q 0 a^4
Et^3
P.7.12 A rectangular platea×b, simply supported along each edge, possesses a small initial curvature in its
unloadedstategivenby
w 0 =A 11 sin
πx
a
sin
πy
b
Determine,usingtheenergymethod,itsfinaldeflectedshapewhenitissubjectedtoacompressiveloadNxper
unitlengthalongtheedgesx=0,x=a.
Ans. w=
A 11
[
1 −
Nxa^2
π^2 D
/(
1 +
a^2
b^2
) 2 ]sin
πx
a
sin
πy
b