264 CHAPTER 8 Columns
whereλ^2 =P/EI.Thefinaldeflectedshape,v,ofthecolumndependsontheformofitsunloadedshape,
v 0 .Assumingthat
v 0 =
∑∞
n= 1
Ansin
nπz
l
(8.24)
andsubstitutinginEq.(8.23),wehave
d^2 v
dz^2
+λ^2 v=−
π^2
l^2
∑∞
n= 1
n^2 Ansin
nπz
l
Thegeneralsolutionofthisequationis
v=Bcosλz+Dsinλz+
∑∞
n= 1
n^2 An
n^2 −α
sin
nπz
l
whereBandDareconstantsofintegrationandα=λ^2 l^2 /π^2 .Theboundaryconditionsarev=0atz= 0
andl,givingB=D=0,fromwhich
v=
∑∞
n= 1
n^2 An
n^2 −α
sin
nπz
l
(8.25)
Notethatincontrasttotheperfectcolumn,weareabletoobtainanontrivialsolutionfordeflection.
Thisistobeexpected,sincethecolumnisinstableequilibriuminitsbentpositionatallvaluesofP.
Analternativeformforαis
α=
Pl^2
π^2 EI
=
P
PCR
(seeEq.(8.5))
Thus,αisalwayslessthanoneandapproachesunitywhenPapproachesPCRsothatthefirsttermin
Eq.(8.25)usuallydominatestheseries.Agoodapproximation,therefore,fordeflectionwhentheaxial
loadisintheregionofthecriticalloadis
v=
A 1
1 −α
sin
πz
l
(8.26)
oratthecenterofthecolumn,wherez=l/ 2
v=
A 1
1 −P/PCR
(8.27)
inwhichA 1 isseentobetheinitialcentraldeflection.Ifcentraldeflectionsδ(=v−A 1 )aremeasured
fromtheinitiallybowedpositionofthecolumn,thenfromEq.(8.27)weobtain
A 1
1 −P/PCR
−A 1 =δ