264 CHAPTER 8 Columns
whereλ^2 =P/EI.Thefinaldeflectedshape,v,ofthecolumndependsontheformofitsunloadedshape,
v 0 .Assumingthat
v 0 =∑∞
n= 1Ansinnπz
l(8.24)
andsubstitutinginEq.(8.23),wehave
d^2 v
dz^2+λ^2 v=−π^2
l^2∑∞
n= 1n^2 Ansinnπz
lThegeneralsolutionofthisequationis
v=Bcosλz+Dsinλz+∑∞
n= 1n^2 An
n^2 −αsinnπz
lwhereBandDareconstantsofintegrationandα=λ^2 l^2 /π^2 .Theboundaryconditionsarev=0atz= 0
andl,givingB=D=0,fromwhich
v=∑∞
n= 1n^2 An
n^2 −αsinnπz
l(8.25)
Notethatincontrasttotheperfectcolumn,weareabletoobtainanontrivialsolutionfordeflection.
Thisistobeexpected,sincethecolumnisinstableequilibriuminitsbentpositionatallvaluesofP.
Analternativeformforαis
α=Pl^2
π^2 EI=
P
PCR
(seeEq.(8.5))Thus,αisalwayslessthanoneandapproachesunitywhenPapproachesPCRsothatthefirsttermin
Eq.(8.25)usuallydominatestheseries.Agoodapproximation,therefore,fordeflectionwhentheaxial
loadisintheregionofthecriticalloadis
v=A 1
1 −αsinπz
l(8.26)
oratthecenterofthecolumn,wherez=l/ 2
v=A 1
1 −P/PCR
(8.27)
inwhichA 1 isseentobetheinitialcentraldeflection.Ifcentraldeflectionsδ(=v−A 1 )aremeasured
fromtheinitiallybowedpositionofthecolumn,thenfromEq.(8.27)weobtain
A 1
1 −P/PCR−A 1 =δ