8.3 Effect of Initial Imperfections 263
Extensiveexperimentscarriedoutonaluminiumalloycolumnsbytheaircraftindustryinthe1940s
showed that the actual buckling load was approximately equal to the tangent modulus load. Shanley
(1947)explainedthatforcolumnswithsmallimperfections,increasesofbothaxialloadandbending
occursimultaneously.Hethenshowedanalyticallythatafterthetangentmodulusloadisreached,the
strainontheconcavesideofthecolumnincreasesrapidly,whilethatontheconvexsidedecreasesslowly.
Thelargedeflectioncorrespondingtotherapidstrainincreaseontheconcaveside,whichoccurssoon
afterthetangentmodulusloadispassed,meansthatitisonlypossibletoexceedthetangentmodulus
loadbyasmallamount.Itfollowsthatthebucklingloadofcolumnsisgivenmostaccuratelyforpractical
purposesbythetangentmodulustheory.
Empiricalformulaehavebeenusedextensivelytopredictbucklingloads,althoughinviewofthe
closeagreementbetweenexperimentandthetangentmodulustheory,theywouldappearunnecessary.
Severalformulaeareinuse;forexample,theRankine,Straight-line,andJohnson’sparabolicformulae
aregiveninmanybooksonelasticstability[Ref.1].
8.3 EffectofInitialImperfections......................................................................
Obviously,itisimpossibleinpracticetoobtainaperfectlystraighthomogeneouscolumnandtoensure
thatitisexactlyaxiallyloaded.Anactualcolumnmaybebentwithsomeeccentricityofload.Such
imperfectionsinfluencetoalargedegreethebehaviorofthecolumnwhich,unliketheperfectcolumn,
beginstobendimmediatelytheaxialloadisapplied.
Letussupposethatacolumn,initiallybent,issubjectedtoanincreasingaxialloadPasshownin
Fig.8.9.Inthiscase,thebendingmomentatanypointisproportionaltothechangeincurvatureofthe
columnfromitsinitialbentposition.Thus,
EI
d^2 v
dz^2
−EI
d^2 v 0
dz^2
−Pv (8.22)
which,onrearranging,becomes
d^2 v
dz^2
+λ^2 v=
d^2 v 0
dz^2
(8.23)
Fig.8.9
Initially bent column.