266 CHAPTER 8 Columns
ThesolutionofEq.(i)isofstandardformandis
v=Acosμz+Bsinμz−eTheboundaryconditionsare:v=0,whenz=0and(dv/dz)=0,whenz=L/2.
FromthefirstoftheseA=e,whilefromthesecond
B=etanμL
2Theequationforthedeflectedshapeofthecolumnisthen
v=e[
cosμ(z−L/ 2 )
cosμL/ 2− 1
]
Themaximumvalueofvoccursatmidspan,wherez=L/2;thatis,
vmax=e(
secμL
2− 1
)
Themaximumbendingmomentisgivenby
M(max)=Pe+Pvmaxsothat
M(max)=PesecμL
28.4 StabilityofBeamsunderTransverseandAxialLoads..........................................
Stressesanddeflectionsinalinearlyelasticbeamsubjectedtotransverseloadsaspredictedbysimple
beamtheoryaredirectlyproportionaltotheappliedloads.Thisrelationshipisvalidifthedeflections
are small such that the slight change in geometry produced in the loaded beam has an insignificant
effectontheloadsthemselves.Thissituationchangesdrasticallywhenaxialloadsactsimultaneously
with the transverse loads. The internal moments, shear forces, stresses, and deflections then become
dependentonthemagnitudeofthedeflectionsaswellasthemagnitudeoftheexternalloads.Theyare
alsosensitive,asweobservedintheprevioussection,tobeamimperfectionssuchasinitialcurvature
andeccentricityofaxialload.Beamssupportingbothaxialandtransverseloadsaresometimesknown
asbeam-columnsorsimplyastransverselyloadedcolumns.
First,weconsiderthecaseofapin-endedbeamcarryingauniformlydistributedloadofintensity
wperunitlengthandanaxialloadPasshowninFig.8.11.Thebendingmomentatanysectionofthe
beamis
M=Pv+wlz
2−
wz^2
2=−EI
d^2 v
dz^2