8.4 Stability of Beams under Transverse and Axial Loads 267Fig.8.11
Bending of a uniformly loaded beam-column.
giving
d^2 v
dz^2+
P
EI
v=w
2 EI(z^2 −lz) (8.29)ThestandardsolutionofEq.(8.29)is
v=Acosλz+Bsinλz+w
2 P(
z^2 −lz−2
λ^2)
,
whereAandBare unknown constants andλ^2 =P/EI. Substituting the boundary conditionsv=0at
z=0andlgives
A=w
λ^2 PB=
w
λ^2 Psinλl(l−cosλl)sothatthedeflectionisdeterminateforanyvalueofwandPandisgivenby
v=w
λ^2 P[
cosλz+(
1 −cosλl
sinλl)
sinλz]
+
w
2 P(
z^2 −lz−2
λ^2)
(8.30)
Inbeamcolumns,asinbeams,weareprimarilyinterestedinmaximumvaluesofstressanddeflection.
For this particular case, the maximum deflection occurs at the center of the beam and is, after some
transformationofEq.(8.30),
vmax=w
λ^2 P(
secλl
2− 1
)
−
wl^2
8 P(8.31)
Thecorrespondingmaximumbendingmomentis
Mmax=−Pvmax−wl^2
8or,fromEq.(8.31)
Mmax=w
λ^2(
1 −secλl
2