8.4 Stability of Beams under Transverse and Axial Loads 267
Fig.8.11
Bending of a uniformly loaded beam-column.
giving
d^2 v
dz^2
+
P
EI
v=
w
2 EI
(z^2 −lz) (8.29)
ThestandardsolutionofEq.(8.29)is
v=Acosλz+Bsinλz+
w
2 P
(
z^2 −lz−
2
λ^2
)
,
whereAandBare unknown constants andλ^2 =P/EI. Substituting the boundary conditionsv=0at
z=0andlgives
A=
w
λ^2 P
B=
w
λ^2 Psinλl
(l−cosλl)
sothatthedeflectionisdeterminateforanyvalueofwandPandisgivenby
v=
w
λ^2 P
[
cosλz+
(
1 −cosλl
sinλl
)
sinλz
]
+
w
2 P
(
z^2 −lz−
2
λ^2
)
(8.30)
Inbeamcolumns,asinbeams,weareprimarilyinterestedinmaximumvaluesofstressanddeflection.
For this particular case, the maximum deflection occurs at the center of the beam and is, after some
transformationofEq.(8.30),
vmax=
w
λ^2 P
(
sec
λl
2
− 1
)
−
wl^2
8 P
(8.31)
Thecorrespondingmaximumbendingmomentis
Mmax=−Pvmax−
wl^2
8
or,fromEq.(8.31)
Mmax=
w
λ^2
(
1 −sec
λl
2