Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1
8.4 Stability of Beams under Transverse and Axial Loads 267

Fig.8.11


Bending of a uniformly loaded beam-column.


giving


d^2 v
dz^2

+

P

EI

v=

w
2 EI

(z^2 −lz) (8.29)

ThestandardsolutionofEq.(8.29)is


v=Acosλz+Bsinλz+

w
2 P

(

z^2 −lz−

2

λ^2

)

,

whereAandBare unknown constants andλ^2 =P/EI. Substituting the boundary conditionsv=0at
z=0andlgives


A=

w
λ^2 P

B=

w
λ^2 Psinλl

(l−cosλl)

sothatthedeflectionisdeterminateforanyvalueofwandPandisgivenby


v=

w
λ^2 P

[

cosλz+

(

1 −cosλl
sinλl

)

sinλz

]

+

w
2 P

(

z^2 −lz−

2

λ^2

)

(8.30)

Inbeamcolumns,asinbeams,weareprimarilyinterestedinmaximumvaluesofstressanddeflection.
For this particular case, the maximum deflection occurs at the center of the beam and is, after some
transformationofEq.(8.30),


vmax=

w
λ^2 P

(

sec

λl
2

− 1

)


wl^2
8 P

(8.31)

Thecorrespondingmaximumbendingmomentis


Mmax=−Pvmax−

wl^2
8

or,fromEq.(8.31)


Mmax=

w
λ^2

(

1 −sec

λl
2

)

(8.32)
Free download pdf