268 CHAPTER 8 Columns
WemayrewriteEq.(8.32)intermsoftheEulerbucklingloadPCR=π^2 EI/l^2 forapin-endedcolumn.
Hence,
Mmax=
wl^2
π^2
PCR
P
(
1 −sec
π
2
√
P
PCR
)
(8.33)
AsPapproachesPCR,thebendingmoment(anddeflection)becomesinfinite.However,thepreceding
theoryisbasedontheassumptionofsmalldeflections(otherwise,d^2 v/dz^2 wouldnotbeacloseapproxi-
mationforcurvature)sothatsuchadeductionisinvalid.Theindicationis,though,thatlargedeflections
willbeproducedbythepresenceofacompressiveaxialloadnomatterhowsmallthetransverseload
mightbe.
Now,letusconsiderthebeam-columnofFig.8.12withhingedendscarryingaconcentratedload
Watadistanceafromtheright-handsupport.For
z≤l−aEI
d^2 v
dz^2
=−M=−Pv−
Waz
l
(8.34)
andfor
z≥l−aEI
d^2 v
dz^2
=−M=−Pv−
W
l
(l−a)(l−z) (8.35)
Writing
λ^2 =
P
EI
Eq.(8.34)becomes
d^2 v
dz^2
+λ^2 v=−
Wa
EIl
z
thegeneralsolutionofwhichis
v=Acosλz+Bsinλz−
Wa
Pl
z (8.36)
Fig.8.12
Beam-column supporting a point load.