268 CHAPTER 8 Columns
WemayrewriteEq.(8.32)intermsoftheEulerbucklingloadPCR=π^2 EI/l^2 forapin-endedcolumn.
Hence,
Mmax=wl^2
π^2PCR
P
(
1 −secπ
2√
P
PCR
)
(8.33)
AsPapproachesPCR,thebendingmoment(anddeflection)becomesinfinite.However,thepreceding
theoryisbasedontheassumptionofsmalldeflections(otherwise,d^2 v/dz^2 wouldnotbeacloseapproxi-
mationforcurvature)sothatsuchadeductionisinvalid.Theindicationis,though,thatlargedeflections
willbeproducedbythepresenceofacompressiveaxialloadnomatterhowsmallthetransverseload
mightbe.
Now,letusconsiderthebeam-columnofFig.8.12withhingedendscarryingaconcentratedload
Watadistanceafromtheright-handsupport.For
z≤l−aEId^2 v
dz^2=−M=−Pv−Waz
l(8.34)
andfor
z≥l−aEId^2 v
dz^2=−M=−Pv−W
l(l−a)(l−z) (8.35)Writing
λ^2 =P
EI
Eq.(8.34)becomes
d^2 v
dz^2+λ^2 v=−Wa
EIlzthegeneralsolutionofwhichis
v=Acosλz+Bsinλz−Wa
Plz (8.36)Fig.8.12
Beam-column supporting a point load.