Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

286 CHAPTER 8 Columns


Sinceθ=0atz=l,


cosμL= 1

or


μL= 2 nπ

Therefore,


μ^2 L^2 = 4 n^2 π^2

or


σI 0 −GJ
E

=

4 n^2 π^2
L^2

Thelowestvalueoftorsionalbucklingloadcorrespondston=1sothat,rearrangingthepreceding,


σ=

1

I 0

(

GJ+

4 π^2 E
L^2

)

(viii)

ThepolarsecondmomentofareaI 0 isgivenby


I 0 =Ixx+Iyy (seeRef.2)

thatis,


I 0 = 2

(

tdd^2 +

td
3

3

)

+

3 td^3
12

+ 2 td

d^2
4

whichgives


I 0 =

4 ltd^3
12

SubstitutingforI 0 ,J,andinEq.(viii)


σ=

4

4 ld^3

(

sgt^2 +

13 π^2 Ed^4
L^2

)

References


[1] Timoshenko,S.P.,andGere,J.M.,TheoryofElasticStability,2ndedition,McGraw-Hill,1961.
[2] Megson,T.H.G.,StructuralandStressAnalysis,2ndedition,Elsevier,2005.
[3] Megson,T.H.G.,AircraftStructuresforEngineeringStudents,4thedition,Elsevier,2007.

Free download pdf