8.6 Flexural–Torsional Buckling of Thin-Walled Columns 285
Theboundaryconditionsareθ=0whenz=0andz=L,andsincethewarpingissuppressedattheends
ofthebeam,
dθ
dz
=0whenz=0andz=L (seeEq.(17.19))
Puttingθ=0atz=0inEq.(ii)
0 =A+D
or
A=−D
Also,
dθ
dz
=−μAsinμz+μBcosμz+C
andsince(dθ/dz)=0atz=0,
C=−μB
Whenz=L,θ=0sothat,fromEq.(ii),
0 =AcosμL+BsinμL+CL+D
whichmayberewritten
0 =B(sinμL−μL)+A(cosμL− 1 ) (iii)
Thenfor(dθ/dz)=0atz=L,
0 =μBcosμL−μAsinμL−μB
or
0 =B(cosμL− 1 )−AsinμL (iv)
EliminatingAfromEqs.(iii)and(iv)
0 =B[2( 1 −cosμL)−μLsinμL](v)
Similarly,intermsoftheconstantC
0 =−C[2( 1 −cosμL)−μLsinμL] (vi)
or
B=−C
ButB=−C/μsothattosatisfybothequationsB=C=0and
θ=Acosμz−A=A(cosμz− 1 ) (vii)