Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

294 CHAPTER 9 Thin Plates


Fig.9.1


Buckling of a thin flat plate.


andthatthesearesmallcomparedwiththethicknessoftheplate.Theserestrictionsthereforeapplyin
thesubsequenttheory.
First, we consider the relatively simple case of the thin plate of Fig. 9.1, loaded as shown, but
simplysupportedalongallfouredges.WehaveseeninChapter7thatitstruedeflectedshapemaybe
representedbytheinfinitedoubletrigonometricalseries


w=

∑∞

m= 1

∑∞

n= 1

Amnsin

mπx
a

sin

nπy
b

Also,thetotalpotentialenergyoftheplateis,fromEqs.(7.37)and(7.45),


U+V=

1

2

∫a

0

∫b

0

[

D

{(

∂^2 w
∂x^2

+

∂^2 w
∂y^2

) 2

− 2 ( 1 −ν)

[

∂^2 w
∂x^2

∂^2 w
∂y^2


(

∂^2 w
∂x∂y

) 2 ]}

−Nx

(

∂w
∂x

) 2 ]

dxdy

(9.1)

TheintegrationofEq.(9.1)onsubstitutingforwissimilartothoseintegrationscarriedoutinChapter7.
Thus,bycomparingwithEq.(7.47),


U+V=

π^4 abD
8

∑∞

m= 1

∑∞

n= 1

A^2 mn

(

m^2
a^2

+

n^2
b^2

)


π^2 b
8 a

Nx

∑∞

m= 1

∑∞

n= 1

m^2 A^2 mn (9.2)

Thetotalpotentialenergyoftheplatehasastationaryvalueintheneutralequilibriumofitsbuckled
state(i.e.,Nx=Nx,CR).Therefore,differentiatingEq.(9.2)withrespecttoeachunknowncoefficient
Amn,wehave


∂(U+V)
∂Amn

=

π^4 abD
4

Amn

(

m^2
a^2

+

n^2
b^2

) 2


π^2 b
4 a

Nx,CRm^2 Amn= 0
Free download pdf