294 CHAPTER 9 Thin Plates
Fig.9.1
Buckling of a thin flat plate.
andthatthesearesmallcomparedwiththethicknessoftheplate.Theserestrictionsthereforeapplyin
thesubsequenttheory.
First, we consider the relatively simple case of the thin plate of Fig. 9.1, loaded as shown, but
simplysupportedalongallfouredges.WehaveseeninChapter7thatitstruedeflectedshapemaybe
representedbytheinfinitedoubletrigonometricalseries
w=
∑∞
m= 1
∑∞
n= 1
Amnsin
mπx
a
sin
nπy
b
Also,thetotalpotentialenergyoftheplateis,fromEqs.(7.37)and(7.45),
U+V=
1
2
∫a
0
∫b
0
[
D
{(
∂^2 w
∂x^2
+
∂^2 w
∂y^2
) 2
− 2 ( 1 −ν)
[
∂^2 w
∂x^2
∂^2 w
∂y^2
−
(
∂^2 w
∂x∂y
) 2 ]}
−Nx
(
∂w
∂x
) 2 ]
dxdy
(9.1)
TheintegrationofEq.(9.1)onsubstitutingforwissimilartothoseintegrationscarriedoutinChapter7.
Thus,bycomparingwithEq.(7.47),
U+V=
π^4 abD
8
∑∞
m= 1
∑∞
n= 1
A^2 mn
(
m^2
a^2
+
n^2
b^2
)
−
π^2 b
8 a
Nx
∑∞
m= 1
∑∞
n= 1
m^2 A^2 mn (9.2)
Thetotalpotentialenergyoftheplatehasastationaryvalueintheneutralequilibriumofitsbuckled
state(i.e.,Nx=Nx,CR).Therefore,differentiatingEq.(9.2)withrespecttoeachunknowncoefficient
Amn,wehave
∂(U+V)
∂Amn
=
π^4 abD
4
Amn
(
m^2
a^2
+
n^2
b^2
) 2
−
π^2 b
4 a
Nx,CRm^2 Amn= 0