9.1 Buckling of Thin Plates 295
andforanontrivialsolution
Nx,CR=π^2 a^2 D
1
m^2
(
m^2
a^2
+
n^2
b^2
) 2
(9.3)
ExactlythesameresultmayhavebeendeducedfromEq.(ii)ofExample7.3,wherethedisplacement
wwouldbecomeinfiniteforanegative(compressive)valueofNxequaltothatofEq.(9.3).
WeobservefromEq.(9.3)thateachtermintheinfiniteseriesfordisplacementcorresponds,asin
thecaseofacolumn,toadifferentvalueofcriticalload(notetheproblemisaneigenvalueproblem).
Thelowestvalueofcriticalloadevolvesfromsomecriticalcombinationofintegersmandn—thatis,
the number of half-waves in thexandydirections, and the plate dimensions. Clearlyn=1givesa
minimumvaluesothatnomatterwhatthevaluesofm,a,andb,theplatebucklesintoahalfsinewave
intheydirection.Thus,wemaywriteEq.(9.3)as
Nx,CR=π^2 a^2 D
1
m^2
(
m^2
a^2
+
1
b^2
) 2
or
Nx,CR=
kπ^2 D
b^2
(9.4)
wheretheplatebucklingcoefficientkisgivenbytheminimumvalueof
k=
(
mb
a
+
a
mb
) 2
(9.5)
foragivenvalueofa/b.Todeterminetheminimumvalueofkforagivenvalueofa/b,weplotkasa
functionofa/bfordifferentvaluesofmasshownbythedottedcurvesinFig.9.2.Theminimumvalue
ofkisobtainedfromthelowerenvelopeofthecurvesshownsolidinthefigure.
Itcanbeseenthatmvarieswiththeratioa/bandthatkandthebucklingloadareaminimumwhen
k=4atvaluesofa/b=1,2,3,....Asa/bbecomeslarge,kapproaches4sothatlongnarrowplates
tendtobuckleintoaseriesofsquares.
Thetransitionfromonebucklingmodetothenextmaybefoundbyequatingvaluesofkforthem
andm+1curves.Hence,
mb
a
+
a
mb
=
(m+ 1 )b
a
+
a
(m+ 1 )b
giving
a
b
=
√
m(m+ 1 )
Substitutingm=1,wehavea/b=
√
2 =1.414,andform=2,a/b=
√
6 =2.45,andsoon.
For a given value ofa/b, the critical stress,σCR=Nx,CR/t, is found from Eqs. (9.4) and (7.4),
thatis,
σCR=
kπ^2 E
12 ( 1 −ν^2 )
(
t
b