Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1
9.1 Buckling of Thin Plates 295

andforanontrivialsolution


Nx,CR=π^2 a^2 D

1

m^2

(

m^2
a^2

+

n^2
b^2

) 2

(9.3)

ExactlythesameresultmayhavebeendeducedfromEq.(ii)ofExample7.3,wherethedisplacement
wwouldbecomeinfiniteforanegative(compressive)valueofNxequaltothatofEq.(9.3).
WeobservefromEq.(9.3)thateachtermintheinfiniteseriesfordisplacementcorresponds,asin
thecaseofacolumn,toadifferentvalueofcriticalload(notetheproblemisaneigenvalueproblem).
Thelowestvalueofcriticalloadevolvesfromsomecriticalcombinationofintegersmandn—thatis,
the number of half-waves in thexandydirections, and the plate dimensions. Clearlyn=1givesa
minimumvaluesothatnomatterwhatthevaluesofm,a,andb,theplatebucklesintoahalfsinewave
intheydirection.Thus,wemaywriteEq.(9.3)as


Nx,CR=π^2 a^2 D

1

m^2

(

m^2
a^2

+

1

b^2

) 2

or


Nx,CR=

kπ^2 D
b^2

(9.4)

wheretheplatebucklingcoefficientkisgivenbytheminimumvalueof


k=

(

mb
a

+

a
mb

) 2

(9.5)

foragivenvalueofa/b.Todeterminetheminimumvalueofkforagivenvalueofa/b,weplotkasa
functionofa/bfordifferentvaluesofmasshownbythedottedcurvesinFig.9.2.Theminimumvalue
ofkisobtainedfromthelowerenvelopeofthecurvesshownsolidinthefigure.
Itcanbeseenthatmvarieswiththeratioa/bandthatkandthebucklingloadareaminimumwhen
k=4atvaluesofa/b=1,2,3,....Asa/bbecomeslarge,kapproaches4sothatlongnarrowplates
tendtobuckleintoaseriesofsquares.
Thetransitionfromonebucklingmodetothenextmaybefoundbyequatingvaluesofkforthem
andm+1curves.Hence,


mb
a

+

a
mb

=

(m+ 1 )b
a

+

a
(m+ 1 )b

giving


a
b

=


m(m+ 1 )

Substitutingm=1,wehavea/b=



2 =1.414,andform=2,a/b=


6 =2.45,andsoon.
For a given value ofa/b, the critical stress,σCR=Nx,CR/t, is found from Eqs. (9.4) and (7.4),
thatis,


σCR=

kπ^2 E
12 ( 1 −ν^2 )

(

t
b

) 2

(9.6)
Free download pdf