1.9 Strain 23
Now cosA′O′C′=cos(π/ 2 −γxz)=sinγxz,andasγxzis small, then cos A′O′C′=γxz. From the
trigonometricalrelationshipsforatriangle,
cosA′O′C′=
(O′A′)^2 +(O′C′)^2 −(A′C′)
2 (O′A′)(O′C′)
2
(1.19)
Wehavepreviouslyshown,inEq.(1.17),that
O′A′=δx
(
1 +
∂u
∂x
)
Similarly,
O′C′=δz
(
1 +
∂w
∂z
)
Butforsmalldisplacements,thederivativesofu,v,andwaresmallcomparedwithlsothat,asweare
concernedherewithactuallengthratherthanchangeinlength,wemayusetheapproximations
O′A′≈δx O′C′≈δz
Againtoafirstapproximation,
(A′C′)^2 =
(
δz−
∂w
∂x
δx
) 2
+
(
δx−
∂u
∂z
δz
) 2
SubstitutingforO′A′,O′C′,andA′C′inEq.(1.19),wehave
cosA′O′C′=
(δx^2 )+(δz)^2 −[δz−(∂w/∂x)δx]^2 −[δx−(∂u/∂z)δz]^2
2 δxδz
Expandingandneglectingfourth-orderpowersgive
cosA′O′C′=
2 (∂w/∂x)δxδz+ 2 (∂u/∂z)δxδz
2 δxδz
Similarly,
γxz=
∂w
∂x
+
∂u
∂z
γxy=
∂v
∂x
+
∂u
∂y
γyz=
∂w
∂y
+
∂v
∂z
⎫
⎪⎪
⎪⎪
⎪⎪
⎪⎬
⎪⎪
⎪⎪
⎪⎪
⎪⎭
(1.20)
ItmustbeemphasizedthatEqs.(1.18)and(1.20)arederivedontheassumptionthatthedisplacements
involved are small. Normally, these linearized equations are adequate for most types of structural
problem,butincaseswheredeflectionsarelarge—forexample,typesofsuspensioncable,andsoon—
thefull,nonlinear,largedeflectionequations,giveninmanybooksonelasticity,mustbeused.