Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1
1.12 Determination of Strains on Inclined Planes 25

SubstitutingfromEqs.(1.18)and(1.21)andrearranging,


2

∂^2 εx
∂y∂z

=


∂x

(


∂γyz
∂x

+

∂γxz
∂y

+

∂γxy
∂z

)

(1.24)

Similarly,


2

∂^2 εy
∂x∂z

=


∂y

(

∂γyz
∂x


∂γxz
∂y

+

∂γxy
∂z

)

(1.25)

and


2

∂^2 εz
∂x∂y

=


∂z

(

∂γyz
∂x

+

∂γxz
∂y


∂γxy
∂z

)

(1.26)

Equations(1.21)through(1.26)arethesixequationsofstraincompatibilitywhichmustbesatisfiedin
thesolutionofthree-dimensionalproblemsinelasticity.


1.11 PlaneStrain...........................................................................................


Although we have derived the compatibility equations and the expressions for strain for the general
three-dimensionalstateofstrain,weshallbemainlyconcernedwiththetwo-dimensionalcasedescribed
inSection1.4.Thecorrespondingstateofstrain,inwhichitisassumedthatparticlesofthebodysuffer
displacementsinoneplaneonly,isknownasplanestrain.Weshallsupposethatthisplaneis,asfor
planestress,thexyplane.Then,εz,γxz,andγyzbecomezero,andEqs.(1.18)and(1.20)reduceto


εx=

∂u
∂x

εy=

∂v
∂y

(1.27)

and


γxy=

∂v
∂x

+

∂u
∂y

(1.28)

Further,bysubstitutingεz=γxz=γyz=0inthesixequationsofcompatibilityandnotingthatεx,εy,
andγxyarenowpurelyfunctionsofxandy,weareleftwithEq.(1.21),namely


∂^2 γxy
∂x∂y

=

∂^2 εy
∂x^2

+

∂^2 εx
∂y^2

astheonlyequationofcompatibilityinthetwo-dimensionalorplanestraincase.


1.12 DeterminationofStrainsonInclinedPlanes......................................................


Having defined the strain at a point in a deformable body with reference to an arbitrary system of
coordinate axes, we may calculate direct strains in any given direction and the change in the angle
(shearstrain)betweenanytwooriginallyperpendiculardirectionsatthatpoint.Weshallconsiderthe
two-dimensionalcaseofplanestraindescribedinSection1.11.

Free download pdf