26 CHAPTER 1 Basic Elasticity
Fig.1.16
(a) Stress system on rectangular element; (b) distorted shape of element due to stress system in (a).
Anelementinatwo-dimensionalbodysubjectedtothecomplexstresssystemofFig.1.16(a)distorts
intotheshapeshowninFig.1.16(b).Inparticular,thetriangularelementECDsuffersdistortiontothe
shape E′C′D′with corresponding changes in the length FC and angle EFC. Suppose that the known
directandshearstrainsassociatedwiththegivenstresssystemareεx,εy,andγxy(theactualrelationships
willbeinvestigatedlater)andthatwewanttofindthedirectstrainεninadirectionnormaltotheplane
EDandtheshearstrainγproducedbytheshearstressactingontheplaneED.
Toafirstorderofapproximation,
C′D′=CD( 1 +εx)
C′E′=CE( 1 +εy)
E′D′=ED( 1 +εn+π/ 2 )
⎫
⎪⎬
⎪⎭
(1.29)
whereεn+π/ 2 isthedirectstraininthedirectionED.FromthegeometryofthetriangleE′C′D′inwhich
angleE′C′D′=π/ 2 −γxy,
(E′D′)^2 =(C′D′)^2 +(C′E′)^2 − 2 (C′D′)(C′E′)cos(π/ 2 −γxy)
orsubstitutingfromEqs.(1.29),
(ED)^2 ( 1 +εn+π/ 2 )^2 =(CD)^2 ( 1 +εx)^2 +(CE)^2 ( 1 +εy)^2
− 2 (CD)(CE)( 1 +εx)( 1 +εy)sinγxy
Notingthat(ED)^2 =(CD)^2 +(CE)^2 andneglectingsquaresandhigherpowersofsmallquantities,this
equationmayberewrittenas
2 (ED)^2 εn+π/ 2 = 2 (CD)^2 εx+ 2 (CE)^2 εy− 2 (CE)(CD)γxy
Dividingby2(ED)^2 gives
εn+π/ 2 =εxsin^2 θ+εycos^2 θ−cosθsinθγxy (1.30)