Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

28 CHAPTER 1 Basic Elasticity


Therefore,atapointinadeformablebody,therearetwomutuallyperpendicularplanesonwhich
theshearstrainγiszeroandnormaltowhichthedirectstrainisamaximumorminimum.Thesestrains
aretheprincipalstrainsatthatpointandaregiven(fromcomparisonwithEqs.(1.11)and(1.12))by


εI=

εx+εy
2

+

1

2


(εx−εy)^2 +γxy^2 (1.35)

and


εII=

εx+εy
2


1

2


(εx−εy)^2 +γxy^2 (1.36)

Iftheshearstrainiszeroontheseplanes,itfollowsthattheshearstressmustalsobezero,andwe
deduce,fromSection1.7,thatthedirectionsoftheprincipalstrainsandprincipalstressescoincide.The
relatedplanesarethendeterminedfromEq.(1.10)orfrom


tan2θ=

γxy
εx−εy

(1.37)

Inaddition,themaximumshearstrainatthepointis

2

)

max

=^12


(εx−εy)^2 +γxy^2 (1.38)

or

2


)

max

=

εI−εII
2

(1.39)

(cf.Eqs.(1.14)and(1.15)).


1.14 Mohr’sCircleofStrain..............................................................................


We now apply the arguments of Section 1.13 to the Mohr’s circle of stress described in Section 1.8.
Acircleofstrain,analogoustothatshowninFig.1.12(b),maybedrawnwhenσx,σy,andsoonare
replaced byεx,εy, and so on, as specified in Section 1.13. The horizontal extremities of the circle
representtheprincipalstrains,theradiusofthecircle,halfthemaximumshearstrain,andsoon.


1.15 Stress–StrainRelationships.........................................................................


Intheprecedingsections,wehavedeveloped,forathree-dimensionaldeformablebody,threeequations
of equilibrium (Eqs. (1.5)) and six strain–displacement relationships (Eqs. (1.18) and (1.20)). From
thelatter,weeliminateddisplacements,therebyderivingsixauxiliaryequationsrelatingstrains.These
compatibility equations are an expression of the continuity of displacement which we have assumed
asaprerequisiteoftheanalysis.Atthisstage,therefore,wehaveobtainednineindependentequations
towardthesolutionofthethree-dimensionalstressproblem.However,thenumberofunknownstotals
15,comprisingsixstresses,sixstrains,andthreedisplacements.Anadditionalsixequationsaretherefore
necessarytoobtainasolution.

Free download pdf