30 CHAPTER 1 Basic Elasticity
Equations(1.42)maybetransposedtoobtainexpressionsforeachstressintermsofthestrains.The
procedureadoptedmaybeanyofthestandardmathematicalapproachesandgives
σx=νE
( 1 +ν)( 1 − 2 ν)e+E
( 1 +ν)εx (1.43)σy=νE
( 1 +ν)( 1 − 2 ν)e+E
( 1 +ν)εy (1.44)σz=νE
( 1 +ν)( 1 − 2 ν)e+E
( 1 +ν)εz (1.45)inwhich
e=εx+εy+εz (seeEq.(1.53))Forthecaseofplanestressinwhichσz=0,Eqs.(1.43)and(1.44)reducetoσx=E
1 −ν^2(εx+νεy) (1.46)σy=E
1 −ν^2(εy+νεx) (1.47)Suppose now that at some arbitrary point in a material, there are principal strainsεIandεIIcor-
responding to principal stressesσIandσII.Ifthesestresses(andstrains)areinthedirectionofthe
coordinate axesxandy, respectively, thenτxy=γxy=0, and from Eq. (1.34), the shear strain on an
arbitraryplaneatthepointinclinedatanangleθtotheprincipalplanesis
γ=(εI−εII)sin2θ (1.48)UsingtherelationshipsofEqs.(1.42)andsubstitutinginEq.(1.48),wehaveγ=1
E
[(σI−νσII)−(σII−νσI)]sin2θor
γ=( 1 +ν)
E(σI−σII)sin2θ (1.49)UsingEq.(1.9)andnotingthatforthisparticularcaseτxy=0,σx=σI,andσy=σII,
2 τ=(σI−σII)sin2θfromwhichwemayrewriteEq.(1.49)intermsofτas
γ=2 ( 1 +ν)
Eτ (1.50)ThetermE/2(1+ν)isaconstantknownasthemodulusofrigidityG.Hence,γ=τ/G