30 CHAPTER 1 Basic Elasticity
Equations(1.42)maybetransposedtoobtainexpressionsforeachstressintermsofthestrains.The
procedureadoptedmaybeanyofthestandardmathematicalapproachesandgives
σx=
νE
( 1 +ν)( 1 − 2 ν)
e+
E
( 1 +ν)
εx (1.43)
σy=
νE
( 1 +ν)( 1 − 2 ν)
e+
E
( 1 +ν)
εy (1.44)
σz=
νE
( 1 +ν)( 1 − 2 ν)
e+
E
( 1 +ν)
εz (1.45)
inwhich
e=εx+εy+εz (seeEq.(1.53))
Forthecaseofplanestressinwhichσz=0,Eqs.(1.43)and(1.44)reduceto
σx=
E
1 −ν^2
(εx+νεy) (1.46)
σy=
E
1 −ν^2
(εy+νεx) (1.47)
Suppose now that at some arbitrary point in a material, there are principal strainsεIandεIIcor-
responding to principal stressesσIandσII.Ifthesestresses(andstrains)areinthedirectionofthe
coordinate axesxandy, respectively, thenτxy=γxy=0, and from Eq. (1.34), the shear strain on an
arbitraryplaneatthepointinclinedatanangleθtotheprincipalplanesis
γ=(εI−εII)sin2θ (1.48)
UsingtherelationshipsofEqs.(1.42)andsubstitutinginEq.(1.48),wehave
γ=
1
E
[(σI−νσII)−(σII−νσI)]sin2θ
or
γ=
( 1 +ν)
E
(σI−σII)sin2θ (1.49)
UsingEq.(1.9)andnotingthatforthisparticularcaseτxy=0,σx=σI,andσy=σII,
2 τ=(σI−σII)sin2θ
fromwhichwemayrewriteEq.(1.49)intermsofτas
γ=
2 ( 1 +ν)
E
τ (1.50)
ThetermE/2(1+ν)isaconstantknownasthemodulusofrigidityG.Hence,
γ=τ/G