436 CHAPTER 15 Bending of Open and Closed, Thin-Walled Beams
Fig.15.12
Determination of neutral axis position and direct stress due to bending.
SubstitutingforεzinEq.(15.13),wehave
σz=
Eξ
ρ
(15.14)
The beam supports pure bending moments so that the resultant normal load on any section must be
zero.Hence,
∫
A
σzdA= 0
Therefore,replacingσzinthisequationfromEq.(15.14)andcancellingtheconstantE/ρgives
∫
A
ξdA= 0
thatis,thefirstmomentofareaofthecrosssectionofthebeamabouttheneutralaxisiszero.Itfollows
thattheneutralaxispassesthroughthecentroidofthecrosssectionasshowninFig.15.12(b),which
istheresultweobtainedforthecaseofsymmetricalbending.
SupposethattheinclinationoftheneutralaxistoCxisα(measuredclockwisefromCx),then
ξ=xsinα+ycosα (15.15)
andfromEq.(15.14),
σz=
E
ρ
(xsinα+ycosα) (15.16)