Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1
15.3 Deflections due to Bending 441

or,whensecond-ordertermsareneglected


Sy=

∂Mx
∂z

Wemaycombinetheseresultsintoasingleexpression


−wy=

∂Sy
∂z

=

∂^2 Mx
∂z^2

(15.23)

Similarlyforloadsinthexzplane,


−wx=

∂Sx
∂z

=

∂^2 My
∂z^2

(15.24)

15.3 DeflectionsduetoBending.........................................................................


Wehavenotedthatabeambendsaboutitsneutralaxiswhoseinclinationrelativetoarbitrarycentroidal
axes is determined from Eq. (15.22). Suppose that at some section of an unsymmetrical beam the
deflectionnormaltotheneutralaxis(andthereforeanabsolutedeflection)isζ,asshowninFig.15.15.
Inotherwords,thecentroidCisdisplacedfromitsinitialpositionCIthroughanamountζtoitsfinal
positionCF.SupposealsothatthecenterofcurvatureRofthebeamatthisparticularsectionisonthe
oppositesideoftheneutralaxistothedirectionofthedisplacementζandthattheradiusofcurvature
isρ. For this position of the center of curvature and from the usual approximate expression for cur-
vature,wehave


1
ρ

=

d^2 ζ
dz^2

(15.25)

Fig.15.15


Determination of beam deflection due to bending.

Free download pdf