Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

442 CHAPTER 15 Bending of Open and Closed, Thin-Walled Beams


Thecomponentsuandvofζareinthenegativedirectionsofthexandyaxes,respectively,sothat


u=−ζsinα, v=−ζcosα (15.26)

Differentiating Eqs. (15.26) twice with respect tozand then substituting forζfrom Eq. (15.25), we
obtain


sinα
ρ

=−

d^2 u
dz^2

,

cosα
ρ

=−

d^2 v
dz^2

(15.27)

InthederivationofEq.(15.18),weseethat


1
ρ

{

sinα
cosα

}

=

1

E(IxxIyy−Ixy^2 )

[

−Ixy Ixx
Iyy −Ixy

]{

Mx
My

}

(15.28)

Substituting in Eqs. (15.28) for sinα/ρand cosα/ρfrom Eqs. (15.27) and writingu′′=d^2 u/dz^2 ,
v′′=d^2 v/dz^2 ,wehave
{
u′′
v′′


}

=

− 1

E(IxxIyy−Ixy^2 )

[

−Ixy Ixx
Iyy −Ixy

]{

Mx
My

}

(15.29)

ItisinstructivetorearrangeEq.(15.29)asfollows
{
Mx
My

}

=−E

[

Ixy Ixx
Iyy Ixy

]{

u′′
v′′

}

(seederivationofEq.(15.18)) (15.30)

thatis,


Mx=−EIxyu′′−EIxxv′′
My=−EIyyu′′−EIxyv′′

}

(15.31)

The first of Eqs. (15.31) shows thatMxproduces curvatures—that is, deflections—in both thexz
andyzplaneseventhoughMy=0;similarlyforMywhenMx=0.Thus,forexample,anunsymmetrical
beamwilldeflectbothverticallyandhorizontallyeventhoughtheloadingisentirelyinaverticalplane.
Similarly,verticalandhorizontalcomponentsofdeflectioninanunsymmetricalbeamareproducedby
horizontalloads.
For a beam having either Cxor Cy(or both) as an axis of symmetry,Ixy=0 and Eqs. (15.29)
reduceto


u′′=−

My
EIyy

, v′′=−

Mx
EIxx

(15.32)

Example 15.5
DeterminethedeflectioncurveandthedeflectionofthefreeendofthecantilevershowninFig.15.16(a);
theflexuralrigidityofthecantileverisEIanditssectionisdoublysymmetrical.

Free download pdf