15.3 Deflections due to Bending 447Sincev=0whenz=0(orsincev=0whenz=L),itfollowsthatC 2 =0andthedeflectedshapeofthe
beamhastheequation
v=w
24 EI( 2 Lz^3 −z^4 −L^3 z) (iv)Themaximumdeflectionoccursatmidspanwherez=L/2andis
vmidspan=−5 wL^4
384 EI(v)Sofar,theconstantsofintegrationweredeterminedimmediatelyaftertheyarose.However,insome
cases,arelevantboundarycondition,say,avalueofgradient,isnotobtainable.Themethodisthento
carrytheunknownconstantthroughthesucceedingintegrationanduseknownvaluesofdeflectionat
twosectionsofthebeam.Thus,inthepreviousexample,Eq.(ii)isintegratedtwicetoobtain
EIv=w
2(
Lz^3
6−
z^4
12)
+C 1 z+C 2Therelevantboundaryconditionsarev=0atz=0andz=L.ThefirstofthesegivesC 2 =0,whereas
fromthesecond,wehaveC 1 =−wL^3 /24.Thus,theequationofthedeflectedshapeofthebeamis
v=w
24 EI( 2 Lz^3 −z^4 −L^3 z)asbefore.
Example 15.8
Figure 15.19(a) shows a simply supported beam carrying a concentrated loadWat midspan. Deter-
mine the deflection curve of the beam and the maximum deflection if the beam section is doubly
symmetrical.
ThesupportreactionsareeachW/2andthebendingmomentMatasectionZadistancez(≤L/2)
fromtheleft-handsupportis
M=−W
2
z (i)FromthesecondofEq.(15.32),wehave
EIv′′=W
2
z (ii)Integrating,weobtain
EIv′=W
2
z^2
2+C 1
Fromsymmetry,theslopeofthebeamiszeroatmidspanwherez=L/2.Thus,C 1 =−WL^2 /16and
EIv′=W
16
( 4 z^2 −L^2 ) (iii)