Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

448 CHAPTER 15 Bending of Open and Closed, Thin-Walled Beams


Fig.15.19


Deflection of a simply supported beam carrying a concentrated load at midspan (Example 15.8).


IntegratingEq.(iii),wehave


EIv=

W

16

(

4 z^3
3

−L^2 z

)

+C 2

andwhenz=0,v=0sothatC 2 =0.Theequationofthedeflectioncurveistherefore


v=

W

48 EI

( 4 z^3 − 3 L^2 z) (iv)

Themaximumdeflectionoccursatmidspanandis


vmidspan=−

WL^3

48 EI

(v)

Notethatinthisproblem,wecouldnotusetheboundaryconditionthatv=0atz=Ltodetermine
C 2 ,sinceEq.(i)appliesonlyfor0≤z≤L/2;itfollowsthatEqs.(iii)and(iv)forslopeanddeflection
applyonlyfor0≤z≤L/2,althoughthedeflectioncurveisclearlysymmetricalaboutmidspan.
Examples15.5through15.8arefrequentlyregardedas“standard”casesofbeamdeflection.


15.3.1 Singularity Functions


ThedoubleintegrationmethodusedinExamples15.5through15.8becomesextremelylengthywhen
evenrelativelysmallcomplicationssuchasthelackofsymmetryduetoanoffsetloadareintroduced.
For example, the addition of a second concentrated load on a simply supported beam would result
in a total of six equations for slope and deflection, producing six arbitrary constants. Clearly, the
computationinvolvedindeterminingtheseconstantswouldbetedious,eventhoughasimplysupported
beamcarryingtwoconcentratedloadsisacomparativelysimplepracticalcase.Analternativeapproach
istointroduceso-calledsingularityorhalf-rangefunctions.Suchfunctionswerefirstappliedtobeam

Free download pdf