454 CHAPTER 15 Bending of Open and Closed, Thin-Walled Beams
Inthisproblem,anexternalmomentM 0 isappliedtothebeamatB.Thesupportreactionsarefound
inthenormalwayandare
RA=−
M 0
L
(downward) RC=
M 0
L
(upward)
ThebendingmomentatanysectionZbetweenBandCisthengivenby
M=−RAz−M 0 (i)
Equation(i)isvalidonlyfortheregionBCandclearlydoesnotcontainasingularityfunctionwhich
wouldcauseM 0 tovanishforz≤b.Weovercomethisdifficultybywriting
M=−RAz−M 0 [z−b]^0 (Note:[z−b]^0 = 1 ) (ii)
Equation (ii) has the same value as Eq. (i) but is now applicable to all sections of the beam,
since [z−b]^0 disappears whenz≤b. Substituting forMfrom Eq. (ii) in the second of Eq. (15.32),
weobtain
EIv′′=RAz+M 0 [z−b]^0 (iii)
IntegrationofEq.(iii)yields
EIv′=RA
z^2
2
+M 0 [z−b]+C 1 (iv)
and
EIv=RA
z^3
6
+
M 0
2
[z−b]^2 +C 1 z+C 2 ,(v)
whereC 1 andC 2 arearbitraryconstants.Theboundaryconditionsarev=0whenz=0andz=L.From
thefirstofthesewehaveC 2 =0,whilethesecondgives
0 =−
M 0
L
L^3
6
+
M 0
2
[L−b]^2 +C 1 L
fromwhich
C 1 =−
M 0
6 L
( 2 L^2 − 6 Lb+ 3 b^2 )
Theequationofthedeflectioncurveofthebeamisthen
v=
M 0
6 EIL
{z^3 + 3 L[z−b]^2 −( 2 L^2 − 6 Lb+ 3 b^2 )z} (vi)