15.3 Deflections due to Bending 455Fig.15.24
Determination of the deflection of a cantilever.
Example 15.12
Determine the horizontal and vertical components of the tip deflection of the cantilever shown in
Fig.15.24.ThesecondmomentsofareaofitsunsymmetricalsectionareIxx,Iyy,andIxy.
FromEqs.(15.29)u′′=MxIxy−MyIxx
E(IxxIyy−Ixy^2 )(i)Inthiscase,Mx=W(L−z),My=0sothatEq.(i)simplifiesto
u′′=WIxy
E(IxxIyy−Ixy^2 )(L−z) (ii)IntegratingEq.(ii)withrespecttoz,
u′=WIxy
E(IxxIyy−Ixy^2 )(
Lz−
z^2
2+A
)
(iii)and
u=WIxy
E(IxxIyy−Ixy^2 )(
L
z^2
2−
z^3
6+Az+B)
(iv)in whichu′denotesdu/dzand the constants of integrationAandBare found from the boundary
conditions;thatis,u′=0andu=0whenz=0.FromthefirstoftheseandEq.(iii),A=0,whilefrom
thesecondandEq.(iv),B=0.Hence,thedeflectedshapeofthebeaminthexzplaneisgivenby
u=WIxy
E(IxxIyy−Ixy^2 )(
L
z^2
2−
z^3
6)
(v)