456 CHAPTER 15 Bending of Open and Closed, Thin-Walled Beams
Atthefreeendofthecantilever(z=L),thehorizontalcomponentofdeflectionis
uf.e.=
WIxyL^3
3 E(IxxIyy−I^2 xy)
(vi)
Similarly,theverticalcomponentofthedeflectionatthefreeendofthecantileveris
vf.e.=
−WIyyL^3
3 E(IxxIyy−Ixy^2 )
(vii)
Theactualdeflectionδf.e.atthefreeendisthengivenby
δf.e.=(u^2 f.e.+v^2 f.e.)
(^12)
atanangleoftan−^1 uf.e./vf.e.tothevertical.
NotethatifeitherCxorCywereanaxisofsymmetry,Ixy=0andEqs.(vi)and(vii)reduceto
uf.e.= 0 vf.e.=
−WL^3
3 EIxx
thewell-knownresultsforthebendingofacantileverhavingasymmetricalcrosssectionandcarrying
aconcentratedverticalloadatitsfreeend(seeExample15.5).
15.4 CalculationofSectionProperties..................................................................
Itwillbehelpfulatthisstagetodiscussthecalculationofthevarioussectionpropertiesrequiredinthe
analysisofbeamssubjectedtobending.Initially,however,twousefultheoremsarequoted.
15.4.1 Parallel Axes Theorem
ConsiderthebeamsectionshowninFig.15.25andsupposethatthesecondmomentofarea,IC,about
anaxisthroughitscentroidCisknown.Thesecondmomentofarea,IN,aboutaparallelaxis,NN,a
distancebfromthecentroidalaxisisthengivenby
IN=IC+Ab^2 (15.33)
Fig.15.25
Parallel axes theorem.