Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1
1.16 Experimental Measurement of Surface Strains 39

TheradiusofthecircleisCQand


CQ=


CN^2 +QN^2

Hence,


CQ=

√[

1
2 (εa−εc)

] 2

+

[

εb−^12 (εa+εc)

] 2

whichsimplifiesto


CQ=

1


2


(εa−εb)^2 +(εc−εb)^2

Therefore,εIisgivenby


εI=OC+radiusofcircle

is


εI=^12 (εa+εc)+

1


2


(εa−εb)^2 +(εc−εb)^2 (1.69)

Also,


εII=OC−radiusofcircle

thatis,


εII=^12 (εa+εc)−

1


2


(εa−εb)^2 +(εc−εb)^2 (1.70)

Finally,theangleθisgivenby


tan2θ=

QN

CN

=

εb−^12 (εa+εc)
1
2 (εa−εc)

thatis,


tan2θ=

2 εb−εa−εc
εa−εc

(1.71)

Asimilarapproachmaybeadoptedfora60◦rosette.


Example 1.7
A bar of solid circular cross section has a diameter of 50mm and carries a torque, T, together
with an axial tensile load,P. A rectangular strain gauge rosette attached to the surface of the bar
gavethefollowingstrainreadings:εa= 1000 × 10 −^6 ,εb=− 200 × 10 −^6 ,andεc=− 300 × 10 −^6 ,where
the gauges ‘a’ and ‘c’ are in line with, and perpendicular to, the axis of the bar, respectively. If
Young’smodulus,E,forthebaris70000N/mm^2 andPoisson’sratio,ν,is0.3,calculatethevaluesof
TandP.

Free download pdf