488 CHAPTER 16 Shear of Beams
SubstitutingforIxxinEq.(i),wehave
qs=− 12 Sy
h^3 ( 1 + 6 b/h)∫s0yds (ii)Theamountofcomputationinvolvedmaybereducedbygivingsomethoughttotherequirementsof
the problem. In this case, we are asked to find the position of the shear center only, not a complete
shearflowdistribution.Fromsymmetry,itisclearthatthemomentsoftheresultantshearsonthetop
andbottomflangesaboutthemidpointofthewebarenumericallyequalandactinthesamerotational
sense. Furthermore, the moment of the web shear about the same point is zero. We deduce that it is
onlynecessarytoobtaintheshearflowdistributiononeitherthetoporbottomflangeforasolution.
Alternatively,choosingaweb/flangejunctionasamomentcenterleadstothesameconclusion.
Onthebottomflange,y=−h/2sothatfromEq.(ii)wehave
q 12 =6 Sy
h^2 ( 1 + 6 b/h)s 1 (iii)Equatingtheclockwisemomentsoftheinternalshearsaboutthemidpointofthewebtotheclockwise
momentoftheappliedshearloadaboutthesamepointgives
Syξs= 2∫b0q 12h
2ds 1or,bysubstitutionfromEq.(iii)
Syξs= 2∫b06 Sy
h^2 ( 1 + 6 b/h)h
2s 1 ds 1fromwhich
ξs=3 b^2
h( 1 + 6 b/h)(iv)Inthecaseofanunsymmetricalsection,thecoordinates(ξS,ηS)oftheshearcenterreferredtosome
convenientpointinthecrosssectionwouldbeobtainedbyfirstdeterminingξSinasimilarmannerto
thatofExample16.2andthenfindingηSbyapplyingashearloadSxthroughtheshearcenter.Inboth
cases,thechoiceofaweb/flangejunctionasamomentcenterreducestheamountofcomputation.
16.3 SHEAR OF CLOSED SECTION BEAMS
The solution for a shear-loaded closed section beam follows a similar pattern to that described in
Section16.2foranopensectionbeambutwithtwoimportantdifferences.First,theshearloadsmaybe
appliedthroughpointsinthecrosssectionotherthantheshearcentersothattorsionalaswellasshear
effectsareincluded.Thisispossible,since,asweshallsee,shearstressesproducedbytorsioninclosed
sectionbeamshaveexactlythesameformasshearstressesproducedbyshear,unlikeshearstressesdue
toshearandtorsioninopensectionbeams.Secondly,itisgenerallynotpossibletochooseanoriginfor