16.3 Shear of Closed Section Beams 489
Fig.16.10
Shear of closed section beams.
satwhichthevalueofshearflowisknown.Considertheclosedsectionbeamofarbitrarysectionshown
inFig.16.10.TheshearloadsSxandSyareappliedthroughanypointinthecrosssectionand,ingeneral,
causedirectbendingstressesandshearflowswhicharerelatedbytheequilibriumequation(16.2).We
assumethathoopstressesandbodyforcesareabsent.Therefore,
∂q
∂s
+t
∂σz
∂z
= 0
Fromthispoint,theanalysisisidenticaltothatforashearloadedopensectionbeamuntilwereachthe
stageofintegratingEq.(16.13),namely,
∫s
0
∂q
∂s
ds=−
(
SxIxx−SyIxy
IxxIyy−Ixy^2
)∫s
0
txds−
(
SyIyy−SxIxy
IxxIyy−Ixy^2
)∫s
0
tyds
Let us suppose that we choose an origin forswhere the shear flow has the unknown valueqs,0.
IntegrationofEq.(16.13)thengives
qs−qs,0=−
(
SxIxx−SyIxy
IxxIyy−Ixy^2
)∫s
0
txds−
(
SyIyy−SxIxy
IxxIyy−Ixy^2
)∫s
0
tyds
or
qs=−
(
SxIxx−SyIxy
IxxIyy−Ixy^2
)∫s
0
txds−
(
SyIyy−SxIxy
IxxIyy−Ixy^2
)∫s
0
tyds+qs,0 (16.15)
WeobservebycomparisonofEqs.(16.15)and(16.14)thatthefirsttwotermsontheright-handside
of Eq. 16.15 represent the shear flow distribution in an open section beam loaded through its shear
center.Thisfactindicatesamethodofsolutionforashearloadedclosedsectionbeam.Representing
this“open”sectionor“basic”shearflowbyqb,wemaywriteEq.(16.15)intheform
qs=qb+qs,0 (16.16)