16.3 Shear of Closed Section Beams 489Fig.16.10
Shear of closed section beams.
satwhichthevalueofshearflowisknown.Considertheclosedsectionbeamofarbitrarysectionshown
inFig.16.10.TheshearloadsSxandSyareappliedthroughanypointinthecrosssectionand,ingeneral,
causedirectbendingstressesandshearflowswhicharerelatedbytheequilibriumequation(16.2).We
assumethathoopstressesandbodyforcesareabsent.Therefore,
∂q
∂s+t∂σz
∂z= 0
Fromthispoint,theanalysisisidenticaltothatforashearloadedopensectionbeamuntilwereachthe
stageofintegratingEq.(16.13),namely,
∫s0∂q
∂sds=−(
SxIxx−SyIxy
IxxIyy−Ixy^2)∫s0txds−(
SyIyy−SxIxy
IxxIyy−Ixy^2)∫s0tydsLet us suppose that we choose an origin forswhere the shear flow has the unknown valueqs,0.
IntegrationofEq.(16.13)thengives
qs−qs,0=−(
SxIxx−SyIxy
IxxIyy−Ixy^2)∫s0txds−(
SyIyy−SxIxy
IxxIyy−Ixy^2)∫s0tydsor
qs=−(
SxIxx−SyIxy
IxxIyy−Ixy^2)∫s0txds−(
SyIyy−SxIxy
IxxIyy−Ixy^2)∫s0tyds+qs,0 (16.15)WeobservebycomparisonofEqs.(16.15)and(16.14)thatthefirsttwotermsontheright-handside
of Eq. 16.15 represent the shear flow distribution in an open section beam loaded through its shear
center.Thisfactindicatesamethodofsolutionforashearloadedclosedsectionbeam.Representing
this“open”sectionor“basic”shearflowbyqb,wemaywriteEq.(16.15)intheform
qs=qb+qs,0 (16.16)