488 CHAPTER 16 Shear of Beams
SubstitutingforIxxinEq.(i),wehave
qs=
− 12 Sy
h^3 ( 1 + 6 b/h)
∫s
0
yds (ii)
Theamountofcomputationinvolvedmaybereducedbygivingsomethoughttotherequirementsof
the problem. In this case, we are asked to find the position of the shear center only, not a complete
shearflowdistribution.Fromsymmetry,itisclearthatthemomentsoftheresultantshearsonthetop
andbottomflangesaboutthemidpointofthewebarenumericallyequalandactinthesamerotational
sense. Furthermore, the moment of the web shear about the same point is zero. We deduce that it is
onlynecessarytoobtaintheshearflowdistributiononeitherthetoporbottomflangeforasolution.
Alternatively,choosingaweb/flangejunctionasamomentcenterleadstothesameconclusion.
Onthebottomflange,y=−h/2sothatfromEq.(ii)wehave
q 12 =
6 Sy
h^2 ( 1 + 6 b/h)
s 1 (iii)
Equatingtheclockwisemomentsoftheinternalshearsaboutthemidpointofthewebtotheclockwise
momentoftheappliedshearloadaboutthesamepointgives
Syξs= 2
∫b
0
q 12
h
2
ds 1
or,bysubstitutionfromEq.(iii)
Syξs= 2
∫b
0
6 Sy
h^2 ( 1 + 6 b/h)
h
2
s 1 ds 1
fromwhich
ξs=
3 b^2
h( 1 + 6 b/h)
(iv)
Inthecaseofanunsymmetricalsection,thecoordinates(ξS,ηS)oftheshearcenterreferredtosome
convenientpointinthecrosssectionwouldbeobtainedbyfirstdeterminingξSinasimilarmannerto
thatofExample16.2andthenfindingηSbyapplyingashearloadSxthroughtheshearcenter.Inboth
cases,thechoiceofaweb/flangejunctionasamomentcenterreducestheamountofcomputation.
16.3 SHEAR OF CLOSED SECTION BEAMS
The solution for a shear-loaded closed section beam follows a similar pattern to that described in
Section16.2foranopensectionbeambutwithtwoimportantdifferences.First,theshearloadsmaybe
appliedthroughpointsinthecrosssectionotherthantheshearcentersothattorsionalaswellasshear
effectsareincluded.Thisispossible,since,asweshallsee,shearstressesproducedbytorsioninclosed
sectionbeamshaveexactlythesameformasshearstressesproducedbyshear,unlikeshearstressesdue
toshearandtorsioninopensectionbeams.Secondly,itisgenerallynotpossibletochooseanoriginfor