16.3 Shear of Closed Section Beams 493
Also,sinceapuretorqueisapplied,theresultantofanyinternaldirectstresssystemmustbezero;in
otherwords,itisself-equilibrating.Thus,
Resultantaxialload=
∮
σtds
whereσisthedirectstressatanypointinthecrosssection.Then,fromtheaboveassumption
0 =
∮
wtds
or
0 =
∮
(ws−w 0 )tds
sothat
w 0 =
∮
wstds
∮
tds
(16.26)
16.3.2 Shear Center
TheshearcenterofaclosedsectionbeamislocatedinasimilarmannertothatdescribedinSection16.2.1
foropensectionbeams.Therefore,todeterminethecoordinateξS(referredtoanyconvenientpointin
thecrosssection)oftheshearcenterSoftheclosedsectionbeamshowninFig.16.12,weapplyan
arbitraryshearloadSythroughS,calculatethedistributionofshearflowqsduetoSy,andthenequate
internalandexternalmoments.However,adifficultyarisesinobtainingqs,0,since,atthisstage,itis
impossibletoequateinternalandexternalmomentstoproduceanequationsimilartoEq.(16.17),as
thepositionofSy,isunknown.Wethereforeusetheconditionthatashearloadactingthroughtheshear
Fig.16.12
Shear center of a closed section beam.