492 CHAPTER 16 Shear of Beams
whichgives
∫s
0
qs
Gt
ds=(ws−w 0 )+ 2 AOs
dθ
dz
+
du
dz
(xs−x 0 )+
dv
dz
(ys−y 0 ), (16.21)
whereAOsis the area swept out by a generator, center at the origin of axes, O, from the origin fors
toanypointsaroundthecrosssection.Continuingtheintegrationcompletelyaroundthecrosssection
yields,fromEq.(16.21) ∮
qs
Gt
ds= 2 A
dθ
dz
fromwhich
dθ
dz
=
1
2 A
∮
qs
Gt
ds (16.22)
SubstitutingfortherateoftwistinEq.(16.21)fromEq.(16.22)andrearranging,weobtainthewarping
distributionaroundthecrosssection
ws−w 0 =
∫s
0
qs
Gt
ds−
AOs
A
∮
qs
Gt
ds−
du
dz
(xs−x 0 )−
dv
dz
(ys−y 0 ) (16.23)
UsingEqs.(16.11)toreplacedu/dzanddv/dzinEq.(16.23),wehave
ws−w 0 =
∫s
0
qs
Gt
ds−
AOs
A
∮
qs
Gt
ds−yR
dθ
dz
(xs−x 0 )+xR
dθ
dz
(ys−y 0 ) (16.24)
ThelasttwotermsinEq.(16.24)representtheeffectofrelatingthewarpingdisplacementtoanarbitrary
origin,whichitselfsuffersaxialdisplacementduetowarping.Inthecasewheretheorigincoincides
withthecenteroftwistRofthesection,thenEq.(16.24)simplifiesto
ws−w 0 =
∫s
0
qs
Gt
ds−
AOs
A
∮
qs
Gt
ds (16.25)
Inproblemsinvolvingsinglyordoublysymmetricalsections,theoriginforsmaybetakentocoincide
withapointofzerowarpingwhichwilloccurwhereanaxisofsymmetryandthewallofthesection
intersect.Forunsymmetricalsections,theoriginforsmaybechosenarbitrarily.Theresultingwarping
distributionwillhaveexactlythesameformastheactualdistributionbutwillbedisplacedaxiallyby
the unknown warping displacement at the origin fors. This value may be found by referring to the
torsionofclosedsectionbeamssubjecttoaxialconstraint.Intheanalysisofsuchbeams,itisassumed
thatthedirectstressdistributionsetupbytheconstraintisdirectlyproportionaltothefreewarpingof
thesection—thatis,
σ=constant×w