Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

492 CHAPTER 16 Shear of Beams


whichgives


∫s

0

qs
Gt

ds=(ws−w 0 )+ 2 AOs


dz

+

du
dz

(xs−x 0 )+

dv
dz

(ys−y 0 ), (16.21)

whereAOsis the area swept out by a generator, center at the origin of axes, O, from the origin fors
toanypointsaroundthecrosssection.Continuingtheintegrationcompletelyaroundthecrosssection
yields,fromEq.(16.21) ∮
qs
Gt


ds= 2 A


dz

fromwhich



dz

=

1

2 A


qs
Gt

ds (16.22)

SubstitutingfortherateoftwistinEq.(16.21)fromEq.(16.22)andrearranging,weobtainthewarping
distributionaroundthecrosssection


ws−w 0 =

∫s

0

qs
Gt

ds−

AOs
A


qs
Gt

ds−

du
dz

(xs−x 0 )−

dv
dz

(ys−y 0 ) (16.23)

UsingEqs.(16.11)toreplacedu/dzanddv/dzinEq.(16.23),wehave


ws−w 0 =

∫s

0

qs
Gt

ds−
AOs
A


qs
Gt

ds−yR

dz

(xs−x 0 )+xR

dz

(ys−y 0 ) (16.24)

ThelasttwotermsinEq.(16.24)representtheeffectofrelatingthewarpingdisplacementtoanarbitrary
origin,whichitselfsuffersaxialdisplacementduetowarping.Inthecasewheretheorigincoincides
withthecenteroftwistRofthesection,thenEq.(16.24)simplifiesto


ws−w 0 =

∫s

0

qs
Gt

ds−

AOs
A


qs
Gt

ds (16.25)

Inproblemsinvolvingsinglyordoublysymmetricalsections,theoriginforsmaybetakentocoincide
withapointofzerowarpingwhichwilloccurwhereanaxisofsymmetryandthewallofthesection
intersect.Forunsymmetricalsections,theoriginforsmaybechosenarbitrarily.Theresultingwarping
distributionwillhaveexactlythesameformastheactualdistributionbutwillbedisplacedaxiallyby
the unknown warping displacement at the origin fors. This value may be found by referring to the
torsionofclosedsectionbeamssubjecttoaxialconstraint.Intheanalysisofsuchbeams,itisassumed
thatthedirectstressdistributionsetupbytheconstraintisdirectlyproportionaltothefreewarpingof
thesection—thatis,


σ=constant×w
Free download pdf