492 CHAPTER 16 Shear of Beams
whichgives
∫s0qs
Gtds=(ws−w 0 )+ 2 AOsdθ
dz+
du
dz(xs−x 0 )+dv
dz(ys−y 0 ), (16.21)whereAOsis the area swept out by a generator, center at the origin of axes, O, from the origin fors
toanypointsaroundthecrosssection.Continuingtheintegrationcompletelyaroundthecrosssection
yields,fromEq.(16.21) ∮
qs
Gt
ds= 2 Adθ
dzfromwhich
dθ
dz=
1
2 A
∮
qs
Gtds (16.22)SubstitutingfortherateoftwistinEq.(16.21)fromEq.(16.22)andrearranging,weobtainthewarping
distributionaroundthecrosssection
ws−w 0 =∫s0qs
Gtds−AOs
A∮
qs
Gtds−du
dz(xs−x 0 )−dv
dz(ys−y 0 ) (16.23)UsingEqs.(16.11)toreplacedu/dzanddv/dzinEq.(16.23),wehave
ws−w 0 =∫s0qs
Gtds−
AOs
A∮
qs
Gtds−yR
dθ
dz(xs−x 0 )+xR
dθ
dz(ys−y 0 ) (16.24)ThelasttwotermsinEq.(16.24)representtheeffectofrelatingthewarpingdisplacementtoanarbitrary
origin,whichitselfsuffersaxialdisplacementduetowarping.Inthecasewheretheorigincoincides
withthecenteroftwistRofthesection,thenEq.(16.24)simplifiesto
ws−w 0 =∫s0qs
Gtds−AOs
A∮
qs
Gtds (16.25)Inproblemsinvolvingsinglyordoublysymmetricalsections,theoriginforsmaybetakentocoincide
withapointofzerowarpingwhichwilloccurwhereanaxisofsymmetryandthewallofthesection
intersect.Forunsymmetricalsections,theoriginforsmaybechosenarbitrarily.Theresultingwarping
distributionwillhaveexactlythesameformastheactualdistributionbutwillbedisplacedaxiallyby
the unknown warping displacement at the origin fors. This value may be found by referring to the
torsionofclosedsectionbeamssubjecttoaxialconstraint.Intheanalysisofsuchbeams,itisassumed
thatthedirectstressdistributionsetupbytheconstraintisdirectlyproportionaltothefreewarpingof
thesection—thatis,
σ=constant×w