516 CHAPTER 17 Torsion of Beams
Inadditiontowarpingacrossthethickness,thecrosssectionofthebeamwillwarpinasimilarmanner
tothatofaclosedsectionbeam.FromFig.16.3,
γzs=
∂w
∂s
+
∂vt
∂z
(17.15)
Referring the tangential displacementvtto the center of twist R of the cross section, we have from
Eq.(16.8)
∂vt
∂z
=pR
dθ
dz
(17.16)
Substitutingfor∂vt/∂zinEq.(17.15)gives
γzs=
∂w
∂s
+pR
dθ
dz
fromwhich
τzs=G
(
∂w
∂s
+pR
dθ
dz
)
(17.17)
Onthemidlineofthesectionwallτzs=0(seeEq.(17.9))sothatfromEq.(17.17)
∂w
∂s
=−pR
dθ
dz
Integratingthisexpressionwithrespecttosandtakingthelowerlimitofintegrationtocoincidewith
thepointofzerowarping,weobtain
ws=−
dθ
dz
∫s
0
pRds (17.18)
FromEqs.(17.14)and(17.18)itcanbeseenthattwotypesofwarpingexistinanopensectionbeam.
Equation(17.18)givesthewarpingofthemidlineofthebeam;thisisknownasprimarywarpingand
isassumedtobeconstantacrossthewallthickness.Equation (17.14)givesthewarpingofthebeam
acrossitswallthickness.Thisiscalledsecondary warping,isverymuchlessthanprimarywarping,
andisusuallyignoredinthethin-walledsectionscommontoaircraftstructures.
Equation(17.18)mayberewrittenintheform
ws=− 2 AR
dθ
dz
(17.19)
or,intermsoftheappliedtorque
ws=− 2 AR
T
GJ
(seeEq.(17.12)) (17.20)
inwhichAR=^12
∫s
0 pRdsistheareasweptoutbyagenerator,rotatingaboutthecenteroftwist,fromthe
pointofzerowarping,asshowninFig.17.11.Thesignofws,foragivendirectionoftorque,depends