Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

516 CHAPTER 17 Torsion of Beams


Inadditiontowarpingacrossthethickness,thecrosssectionofthebeamwillwarpinasimilarmanner
tothatofaclosedsectionbeam.FromFig.16.3,


γzs=

∂w
∂s

+

∂vt
∂z

(17.15)

Referring the tangential displacementvtto the center of twist R of the cross section, we have from
Eq.(16.8)


∂vt
∂z

=pR


dz

(17.16)

Substitutingfor∂vt/∂zinEq.(17.15)gives


γzs=

∂w
∂s

+pR


dz

fromwhich


τzs=G

(

∂w
∂s

+pR


dz

)

(17.17)

Onthemidlineofthesectionwallτzs=0(seeEq.(17.9))sothatfromEq.(17.17)


∂w
∂s

=−pR


dz

Integratingthisexpressionwithrespecttosandtakingthelowerlimitofintegrationtocoincidewith
thepointofzerowarping,weobtain


ws=−


dz

∫s

0

pRds (17.18)

FromEqs.(17.14)and(17.18)itcanbeseenthattwotypesofwarpingexistinanopensectionbeam.
Equation(17.18)givesthewarpingofthemidlineofthebeam;thisisknownasprimarywarpingand
isassumedtobeconstantacrossthewallthickness.Equation (17.14)givesthewarpingofthebeam
acrossitswallthickness.Thisiscalledsecondary warping,isverymuchlessthanprimarywarping,
andisusuallyignoredinthethin-walledsectionscommontoaircraftstructures.
Equation(17.18)mayberewrittenintheform


ws=− 2 AR


dz

(17.19)

or,intermsoftheappliedtorque


ws=− 2 AR

T

GJ

(seeEq.(17.12)) (17.20)

inwhichAR=^12


∫s
0 pRdsistheareasweptoutbyagenerator,rotatingaboutthecenteroftwist,fromthe
pointofzerowarping,asshowninFig.17.11.Thesignofws,foragivendirectionoftorque,depends

Free download pdf