19.4 Deflection of Open and Closed Section Beams 553
givingthesamesolutionasbefore.Notethatiftheunitlengthofbeamhadbeentakentobe1m,the
solutionwouldhavebeenq 12 =−6000N/m,q 23 =−12000N/m,andq 34 =−6000N/m.
19.3.5 Torsion of Open and Closed Section Beams
Nodirectstressesaredevelopedineitheropenorclosedsectionbeamssubjectedtoapuretorqueunless
axial constraints are present. The shear stress distribution is therefore unaffected by the presence of
booms,andtheanalysespresentedinChapter17apply.
19.4 DeflectionofOpenandClosedSectionBeams..................................................
Bending,shear,andtorsionaldeflectionsofthin-walledbeamsarereadilyobtainedbyapplicationof
theunitloadmethoddescribedinSection5.5.Thedisplacementinagivendirectionduetotorsionis
givendirectlybythelastofEqs.(5.21),thus,
(^) T=
∫
L
T 0 T 1
GJ
dz (19.14)
whereJ,thetorsionconstant,dependsonthetypeofbeamunderconsideration.Foranopensection
beam,JisgivenbyeitherofEqs.(17.11),whereasinthecaseofaclosedsectionbeam,J= 4 A^2 /(
∮
ds/t)
(Eq.(17.4))foraconstantshearmodulus.
Expressionsforthebendingandsheardisplacementsofunsymmetricalthin-walledbeamsmayalso
be determined by the unit load method. They are complex for the general case and are most easily
derivedfromfirstprinciplesbyconsideringthecomplementaryenergyoftheelasticbodyintermsof
stressesandstrainsratherthanloadsanddisplacements.InChapter5,weobservedthatthetheoremof
theprincipleofthestationaryvalueofthetotalcomplementaryenergyofanelasticsystemisequivalent
totheapplicationoftheprincipleofvirtualworkwherevirtualforcesactthroughrealdisplacements.We
maythereforespecifythatinourexpressionfortotalcomplementaryenergy,thedisplacementsarethe
actualdisplacementsproducedbytheappliedloads,whilethevirtualforcesystemistheunitload.
Considering deflections due to bending, we see, from Eq. (5.6), that the increment in total
complementaryenergyduetotheapplicationofavirtualunitloadis
−
∫
L
⎛
⎝
∫
A
σz,1εz,0dA
⎞
⎠dz+ (^1) M
whereσz,1isthedirectbendingstressatanypointinthebeamcrosssectioncorrespondingtotheunit
loadandεz,0isthestrainatthepointproducedbytheactualloadingsystem.Further, (^) Mistheactual
displacementduetobendingatthepointofapplicationandinthedirectionoftheunitload.Sincethe
systemisinequilibriumundertheactionoftheunitload,theaboveexpressionmustequalzero(see
Eq.(5.6)).Hence,
(^) M=
∫
L
⎛
⎝
∫
A
σz,1εz,0dA
⎞
⎠dz (19.15)