554 CHAPTER 19 Structural Idealization
FromEq.(15.18)andthethirdofEqs.(1.42),
σz,1=(
My,1Ixx−Mx,1Ixy
IxxIyy−Ixy^2)
x+(
Mx,1Iyy−My,1Ixy
IxxIyy−Ixy^2)
yεz,0=1
E
[(
My,0Ixx−Mx,0Ixy
IxxIyy−Ixy^2)
x+(
Mx,0Iyy−My,0Ixy
IxxIyy−Ixy^2)
y]
wherethesuffixes1and0refertotheunitandactualloadingsystems,andx,yarethecoordinatesof
anypointinthecrosssectionreferredtoacentroidalsystemofaxes.Substitutingforσz,1andεz,0in
Eq.(19.15)andrememberingthat
∫
Ax(^2) dA=Iyy,∫
Ay
(^2) dA=Ixx,and∫
AxydA=Ixy,wehave
(^) M=
1
E(IxxIyy−Ixy^2 )^2∫
L{
(My,1Ixx−Mx,1Ixy)(My,0Ixx−Mx,0Ixy)Iyy+(Mx,1Iyy−My,1Ixy)(Mx,0Iyy−My,0Ixy)Ixx
+[(My,1Ixx−Mx,1Ixy)(Mx,0Iyy−My,0Ixy)+(Mx,1Iyy−My,1Ixy)(My,0Ixx−Mx,0Ixy)]Ixy}
dz(19.16)
Forasectionhavingeitherxoryaxisasanaxisofsymmetry,Ixy=0,andEq.(19.16)reducesto
(^) M=
1
E
∫
L(
My,1My,0
Iyy+
Mx,1Mx,0
Ixx)
dz (19.17)Thederivationofanexpressionforthesheardeflectionofthin-walledsectionsbytheunitloadmethod
isachievedinasimilarmanner.BycomparingEq.(19.15),wededucethatthedeflection (^) S,dueto
shearofathin-walledopenorclosedsectionbeamofthicknesst,isgivenby
(^) S=
∫
L⎛
⎝
∫
sectτ 1 γ 0 tds⎞
⎠dz (19.18)whereτ 1 istheshearstressatanarbitrarypointsaroundthesectionproducedbyaunitloadapplied
atthepointandinthedirection (^) S,andγ 0 istheshearstrainatthearbitrarypointcorrespondingto
theactualloadingsystem.Theintegralinparenthesesistakenoverallthewallsofthebeam.Infact,
boththeappliedandunitshearloadsmustactthroughtheshearcenterofthecrosssection;otherwise
additionaltorsionaldisplacementsoccur.Whereshearloadsactatotherpoints,thesemustbereplaced
byshearloadsattheshearcenterplusatorque.Thethicknesstistheactualskinthicknessandmay
vary around the cross section but is assumed to be constant along the length of the beam. Rewriting
Eq.(19.18)intermsofshearflowsq 1 andq 0 ,weobtain
(^) S=
∫
L⎛
⎝
∫
sectq 0 q 1
Gtds⎞
⎠dz (19.19)