554 CHAPTER 19 Structural Idealization
FromEq.(15.18)andthethirdofEqs.(1.42),
σz,1=
(
My,1Ixx−Mx,1Ixy
IxxIyy−Ixy^2
)
x+
(
Mx,1Iyy−My,1Ixy
IxxIyy−Ixy^2
)
y
εz,0=
1
E
[(
My,0Ixx−Mx,0Ixy
IxxIyy−Ixy^2
)
x+
(
Mx,0Iyy−My,0Ixy
IxxIyy−Ixy^2
)
y
]
wherethesuffixes1and0refertotheunitandactualloadingsystems,andx,yarethecoordinatesof
anypointinthecrosssectionreferredtoacentroidalsystemofaxes.Substitutingforσz,1andεz,0in
Eq.(19.15)andrememberingthat
∫
Ax
(^2) dA=Iyy,∫
Ay
(^2) dA=Ixx,and∫
AxydA=Ixy,wehave
(^) M=
1
E(IxxIyy−Ixy^2 )^2
∫
L
{
(My,1Ixx−Mx,1Ixy)(My,0Ixx−Mx,0Ixy)Iyy
+(Mx,1Iyy−My,1Ixy)(Mx,0Iyy−My,0Ixy)Ixx
+[(My,1Ixx−Mx,1Ixy)(Mx,0Iyy−My,0Ixy)
+(Mx,1Iyy−My,1Ixy)(My,0Ixx−Mx,0Ixy)]Ixy
}
dz
(19.16)
Forasectionhavingeitherxoryaxisasanaxisofsymmetry,Ixy=0,andEq.(19.16)reducesto
(^) M=
1
E
∫
L
(
My,1My,0
Iyy
+
Mx,1Mx,0
Ixx
)
dz (19.17)
Thederivationofanexpressionforthesheardeflectionofthin-walledsectionsbytheunitloadmethod
isachievedinasimilarmanner.BycomparingEq.(19.15),wededucethatthedeflection (^) S,dueto
shearofathin-walledopenorclosedsectionbeamofthicknesst,isgivenby
(^) S=
∫
L
⎛
⎝
∫
sect
τ 1 γ 0 tds
⎞
⎠dz (19.18)
whereτ 1 istheshearstressatanarbitrarypointsaroundthesectionproducedbyaunitloadapplied
atthepointandinthedirection (^) S,andγ 0 istheshearstrainatthearbitrarypointcorrespondingto
theactualloadingsystem.Theintegralinparenthesesistakenoverallthewallsofthebeam.Infact,
boththeappliedandunitshearloadsmustactthroughtheshearcenterofthecrosssection;otherwise
additionaltorsionaldisplacementsoccur.Whereshearloadsactatotherpoints,thesemustbereplaced
byshearloadsattheshearcenterplusatorque.Thethicknesstistheactualskinthicknessandmay
vary around the cross section but is assumed to be constant along the length of the beam. Rewriting
Eq.(19.18)intermsofshearflowsq 1 andq 0 ,weobtain
(^) S=
∫
L
⎛
⎝
∫
sect
q 0 q 1
Gt
ds
⎞
⎠dz (19.19)