19.4 Deflection of Open and Closed Section Beams 555
whereagainthesuffixesrefertotheactualandunitloadingsystems.Inthecasesofbothopenandclosed
sectionbeams,thegeneralexpressionsforshearflowarelongandarebestevaluatedbeforesubstituting
inEq.(19.19).Foranopensectionbeamcomprisingboomsandwallsofdirectstress-carryingthickness
tD,wehave,fromEq.(19.6),
q 0 =−
(
Sx,0Ixx−Sy,0Ixy
IxxIyy−Ixy^2
)⎛
⎝
∫s
0
tDxds+
∑n
r= 1
Brxr
⎞
⎠
−
(
Sy,0Iyy−Sx,0Ixy
IxxIyy−Ixy^2
)⎛
⎝
∫s
0
tDyds+
∑n
r= 1
Bryr
⎞
⎠
(19.20)
and
q 1 =−
(
Sx,1Ixx−Sy,1Ixy
IxxIyy−Ixy^2
)⎛
⎝
∫s
0
tDxds+
∑n
r= 1
Brxr
⎞
⎠
−
(
Sy,1Iyy−Sx,1Ixy
IxxIyy−Ixy^2
)⎛
⎝
∫s
0
tDyds+
∑n
r= 1
Bryr
⎞
⎠
(19.21)
SimilarexpressionsareobtainedforaclosedsectionbeamfromEq.(19.11).
Example 19.5
Calculatethedeflectionofthefreeendofacantilever2000mmlonghavingachannelsectionidentical
tothatinExample19.3andsupportingavertical,upwardloadof4.8kNactingthroughtheshearcenter
ofthesection.Theeffectivedirectstress-carryingthicknessoftheskiniszero,whileitsactualthickness
is1mm.Young’smodulusEandtheshearmodulusGare70000and30000N/mm^2 ,respectively.
Thesectionisdoublysymmetrical(i.e.,thedirectstress-carryingarea)andsupportsaverticalload
producing a vertical deflection. Thus, we apply a unit load through the shear center of the section at
thetipofthecantileverandinthesamedirectionastheappliedload.Sincetheloadisappliedthrough
theshearcenter,thereisnotwistingofthesection,andthetotaldeflectionisgiven,fromEqs.(19.17),
(19.19),(19.20),and(19.21),by
=
∫L
0
Mx,0Mx,1
EIxx
dz+
∫L
0
⎛
⎝
∫
sect
q 0 q 1
Gt
ds
⎞
⎠dz (i)
whereMx,0=−4.8× 103 ( 2000 −z),Mx,1=− 1 ( 2000 −z)
q 0 =−
4.8× 103
Ixx
∑n
r= 1
Bryr q 1 =−
1
Ixx
∑n
r= 1
Bryr