19.4 Deflection of Open and Closed Section Beams 555whereagainthesuffixesrefertotheactualandunitloadingsystems.Inthecasesofbothopenandclosed
sectionbeams,thegeneralexpressionsforshearflowarelongandarebestevaluatedbeforesubstituting
inEq.(19.19).Foranopensectionbeamcomprisingboomsandwallsofdirectstress-carryingthickness
tD,wehave,fromEq.(19.6),
q 0 =−(
Sx,0Ixx−Sy,0Ixy
IxxIyy−Ixy^2)⎛
⎝
∫s0tDxds+∑nr= 1Brxr⎞
⎠
−
(
Sy,0Iyy−Sx,0Ixy
IxxIyy−Ixy^2)⎛
⎝
∫s0tDyds+∑nr= 1Bryr⎞
⎠
(19.20)
and
q 1 =−(
Sx,1Ixx−Sy,1Ixy
IxxIyy−Ixy^2)⎛
⎝
∫s0tDxds+∑nr= 1Brxr⎞
⎠
−
(
Sy,1Iyy−Sx,1Ixy
IxxIyy−Ixy^2)⎛
⎝
∫s0tDyds+∑nr= 1Bryr⎞
⎠
(19.21)
SimilarexpressionsareobtainedforaclosedsectionbeamfromEq.(19.11).
Example 19.5
Calculatethedeflectionofthefreeendofacantilever2000mmlonghavingachannelsectionidentical
tothatinExample19.3andsupportingavertical,upwardloadof4.8kNactingthroughtheshearcenter
ofthesection.Theeffectivedirectstress-carryingthicknessoftheskiniszero,whileitsactualthickness
is1mm.Young’smodulusEandtheshearmodulusGare70000and30000N/mm^2 ,respectively.
Thesectionisdoublysymmetrical(i.e.,thedirectstress-carryingarea)andsupportsaverticalload
producing a vertical deflection. Thus, we apply a unit load through the shear center of the section at
thetipofthecantileverandinthesamedirectionastheappliedload.Sincetheloadisappliedthrough
theshearcenter,thereisnotwistingofthesection,andthetotaldeflectionisgiven,fromEqs.(19.17),
(19.19),(19.20),and(19.21),by
=
∫L
0Mx,0Mx,1
EIxxdz+∫L
0⎛
⎝
∫
sectq 0 q 1
Gtds⎞
⎠dz (i)whereMx,0=−4.8× 103 ( 2000 −z),Mx,1=− 1 ( 2000 −z)
q 0 =−4.8× 103
Ixx∑nr= 1Bryr q 1 =−1
Ixx∑nr= 1Bryr