568 CHAPTER 20 Wing Spars and Box Beams
seethatEq.(16.17)becomes
Sxη 0 −Syξ 0 =
∮
qbpds+ 2 Aqs,0−
∑m
r= 1
Px,rηr+
∑m
r= 1
Py,rξr (20.16)
Equation(20.16)isdirectlyapplicabletoataperedbeamsubjectedtoforcespositionedinrelationto
themomentcenterasshown.Caremustbetakeninaparticularproblemtoensurethatthemomentsof
theforcesaregiventhecorrectsign.
Example 20.2
ThecantileverbeamshowninFig.20.6isuniformlytaperedalongitslengthinbothxandydirections
and carries a load of 100kN at its free end. Calculate the forces in the booms and the shear flow
distributioninthewallsatasection2mfromthebuilt-inendiftheboomsresistallthedirectstresses
whilethewallsareeffectiveonlyinshear.Eachcornerboomhasacross-sectionalareaof900mm^2 ,
whilebothcentralboomshavecross-sectionalareasof1200mm^2.
Theinternalforcesystematasection2mfromthebuilt-inendofthebeamis
Sy=100kN Sx= 0 Mx=− 100 × 2 =−200kNm My= 0
ThebeamhasadoublysymmetricalcrosssectionsothatIxy=0andEq.(15.18)reducesto
σz=
Mxy
Ixx
(i)
Fig.20.6
(a) Beam of Example 20.2; (b) section 2m from built-in end.