70 CHAPTER 3 Torsion of Solid Sections
Fig.3.4
Rigid body displacement in the cross section of the bar.
or
u=−θyv=θx (3.9)ReferringtoEqs.(1.20)and(1.46)
γzx=∂u
∂z+
∂w
∂x=
τzx
Gγzy=∂w
∂y+
∂v
∂z=
τzy
GRearrangingandsubstitutingforuandvfromEqs.(3.9)
∂w
∂x=
τzx
G+
dθ
dzy∂w
∂y=
τzy
G−
dθ
dzx (3.10)For a particular torsion problem Eqs. (3.10) enable the warping displacementwof the originally
planecrosssectiontobedetermined.Notethatsinceeachcrosssectionrotatesasarigidbody,θisa
functionofzonly.
DifferentiatingthefirstofEqs.(3.10)withrespecttoy,thesecondwithrespecttox,andsubtracting,
wehave
0 =
1
G
(
∂τzx
∂y−
∂τzy
∂x)
+ 2
dθ
dzExpressingτzxandτzyintermsofφgives
∂^2 φ
∂x^2+
∂^2 φ
∂y^2=− 2 G
dθ
dzor,fromEq.(3.4)
− 2 G
dθ
dz=∇^2 φ=F(constant) (3.11)