3.1Prandtl Stress Function Solution 71
ItisconvenienttointroduceatorsionconstantJdefinedbythegeneraltorsionequation
T=GJ
dθ
dz
(3.12)
The productGJis known as thetorsional rigidityof the bar and may be written, from Eqs. (3.8)
and(3.11),
GJ=−
4 G
∇^2 φ
∫∫
φdxdy (3.13)
ConsidernowthelineofconstantφinFig.3.5.Ifsisthedistancemeasuredalongthislinefrom
somearbitrarypoint,then
∂φ
∂s
= 0 =
∂φ
∂y
dy
ds
+
∂φ
∂x
dx
ds
UsingEqs.(3.2)and(3.6),wemayrewritethisequationas
∂φ
∂s
=τzxl+τzym= 0 (3.14)
FromFig.3.5thenormalandtangentialcomponentsofshearstressare
τzn=τzxl+τzym τzs=τzyl−τzxm (3.15)
ComparingthefirstofEqs.(3.15)withEq.(3.14),weseethatthenormalshearstressiszerosothat
theresultantshearstressatanypointistangentialtoalineofconstantφ.Theseareknownaslinesof
shearstressorshearlines.
SubstitutingφinthesecondofEqs.(3.15),wehave
τzs=−
∂φ
∂x
l−
∂φ
∂y
m
Fig.3.5
Lines of shear stress.