72 CHAPTER 3 Torsion of Solid Sections
whichmaybewritten,fromFig.3.5,as
τzx=−∂φ
∂xdx
dn−
∂φ
∂ydy
dn=−
∂φ
∂n(3.16)
where, in this case, the direction cosineslandmare defined in terms of an elemental normal of
lengthδn.
Therefore,wehaveshownthattheresultantshearstressatanypointistangentialtothelineofshear
stressthroughthepointandhasavalueequaltominusthederivativeofφinadirectionnormaltotheline.
Example 3.1
Determine the rate of twist and the stress distribution in a circular section bar of radiusRwhich is
subjectedtoequalandoppositetorquesTateachofitsfreeends.
Ifweassumeanoriginofaxesatthecenterofthebar,theequationofitssurfaceisgivenbyx^2 +y^2 =R^2Ifwenowchooseastressfunctionoftheform
φ=C(x^2 +y^2 −R^2 ) (i)theboundaryconditionφ=0issatisfiedateverypointontheboundaryofthebarandtheconstantC
maybechosentofulfilltheremainingrequirementofcompatibility.Therefore,fromEqs.(3.11)and(i)
4 C=− 2 G
dθ
dzsothat
C=−G
2
dθ
dzand
φ=−Gdθ
dz(x^2 +y^2 −R^2 )|2(ii)SubstitutingforφinEq.(3.8)
T=−G
dθ
dz(∫∫
x^2 dxdy+∫∫
y^2 dxdy−R^2∫∫
dxdy)
ThefirstandsecondintegralsinthisequationbothhavethevalueπR^4 /4, whereasthethirdintegralis
equaltoπR^2 ,theareaofcrosssectionofthebar.Then,
T=−G
dθ
dz(
πR^4
4+
πR^4
4−πR^4