74 CHAPTER 3 Torsion of Solid Sections
Fig.3.6
Torsion of a bar of elliptical cross section.
Thesemimajorandsemiminoraxesareaandb,respectively,sothattheequationofitsboundaryisx^2
a^2+
y^2
b^2= 1
Ifwechooseastressfunctionoftheform
φ=C(
x^2
a^2+
y^2
b^2− 1
)
,(i)thentheboundaryconditionφ=0issatisfiedateverypointontheboundaryandtheconstantCmay
bechosentofulfilltheremainingrequirementofcompatibility.Thus,fromEqs.(3.11)and(i)
2 C
(
1
a^2+
1
b^2)
=− 2 G
dθ
dzor
C=−G
dθ
dza^2 b^2
(a^2 +b^2 )(ii)giving
φ=−Gdθ
dza^2 b^2
(a^2 +b^2 )(
x^2
a^2+
y^2
b^2− 1
)
(iii)SubstitutingthisexpressionforφinEq.(3.8)establishestherelationshipbetweenthetorqueTandthe
rateoftwist
T=− 2 G
dθ
dza^2 b^2
(a^2 +b^2 )(
1
a^2∫∫
x^2 dxdy+1
b^2∫∫
y^2 dxdy−∫∫
dxdy)
The first and second integrals in this equation are the second moments of areaIyy=πa^3 b/4and
Ixx=πab^3 /4,whereasthethirdintegralistheareaofthecrosssectionA=πab.Replacingtheintegrals