3.2St. Venant Warping Function Solution 75
bythesevaluesgives
T=G
dθ
dz
πa^3 b^3
(a^2 +b^2 )
(iv)
fromwhich(seeEq.(3.12))
J=
πa^3 b^3
(a^2 +b^2 )
(v)
The shear stress distribution is obtained in terms of the torque by substituting for the product
G(dθ/dz)inEq.(iii)fromEq.(iv)andthendifferentiatingasindicatedbytherelationshipsofEqs.(3.2).
Thus,
τzx=−
2 Ty
πab^3
τzy=
2 Tx
πa^3 b
(vi)
Sofarwehavesolvedforthestressdistribution,Eqs.(vi),andtherateoftwist,Eq.(iv).Itremains
todeterminethewarpingdistributionwoverthecrosssection.ForthiswereturntoEqs.(3.10)which
become,onsubstitutingfromtheprecedingforτzx,τzy,anddθ/dz
∂w
∂x
=−
2 Ty
πab^3 G
+
T
G
(a^2 +b^2 )
πa^3 b^3
y
∂w
∂y
=
2 Tx
πa^3 bG
−
T
G
(a^2 +b^2 )
πa^3 b^3
x
or
∂w
∂x
=
T
πa^3 b^3 G
(b^2 −a^2 )y
∂w
∂y
=
T
πa^3 b^3 G
(b^2 −a^2 )x (vii)
IntegratingbothofEqs.(vii)
w=
T(b^2 −a^2 )
πa^3 b^3 G
yx+f 1 (y) w=
T(b^2 −a^2 )
πa^3 b^3 G
xy+f 2 (x)
Thewarpingdisplacementgivenbyeachoftheseequationsmusthavethesamevalueatidenticalpoints
(x,y).Itfollowsthatf 1 (y)=f 2 (x)=0.Hence,
w=
T(b^2 −a^2 )
πa^3 b^3 G
xy (viii)
Linesofconstantw,therefore,describehyperbolaswiththemajorandminoraxesoftheellipticalcross
sectionasasymptotes.Further,forapositive(anticlockwise)torquethewarpingisnegativeinthefirst
andthirdquadrants(a>b)andpositiveinthesecondandfourth.
3.2 St.VenantWarpingFunctionSolution............................................................
In formulating his stress function solution, Prandtl made assumptions concerned with the stress dis-
tribution in the bar. The alternative approach presented by St. Venant involves assumptions as to the
mode of displacement of the bar—namely, that cross sections of a bar subjected to torsion maintain